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Abstract: Experiments on the thermal decomposition of CuSe were carried out by using a thermogravimetric analyzer
(TGA) at different heating rates. The kinetic parameters and mechanisms were discussed based on model-free and
model-based analyses. The decomposition rate and decomposition behavior of CuSe were investigated by using a
vacuum thermogravimetric furnace. The results showed that the R3 model was identified as the most probable
mechanism function under the present experimental conditions. The average values of activation energy and the
pre-exponential factor were 12.344 J/mol and 0.152 s, respectively. The actual decomposition rate of CuSe was found

to be 0.0030 g/(cm?-min).
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1 Introduction

With the booming development of new
semiconductor materials, selenide semiconductors
have shown great applications in the fields
of biomedicine, photocatalysis, and CulnGaSe
thin-film solar cells [1-3]. Notably, CuSe has
drawn the attention of many researchers [4—7]
owing to its unique and sensitive photovoltaic
properties. It is widely used in solar cells [8—11],
superionic conductors [12—14], thermoelectric
converters, laser infrared detection, photosensitive
gas sensor [15], and catalytic degradation [16]. In
addition, CuSe serves as an ideal photosensitizer to

reduce the probability of occurrence of liver, lung,
and prostate cancers [17,18]. Recently, several
research methods such as the hydrothermal
approach [19], electrochemical synthesis [20],
colloidal synthesis [21], solvothermal method [22],
and microwave-assisted synthesis have been
applied to preparing CuSe. However, the
preparation of high purity CuSe is extremely hard
because it is easy to decompose to CuxSe [23] by
the conventional methods. Therefore, it is especially
necessary to study the decomposition properties of
CuSe.

Much previous work has shown that CuSe
decomposes readily under certain conditions. For
example, below 623 K it produces a continuous
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phase transition from CuSe to Cu,-,Se and then to
Cu,Se [24]. MILMAN [25] predicted that the
hexagonal modification of CuSe is less stable than
the orthorhombic phase under pressure, and
therefore much CuSe exists as an orthorhombic
phase in a vacuum environment. LEINEMANN
et al [26] determined the enthalpy value of CuSe to
be 8 kJ/mol, which corresponded to the enthalpy
values of conversion of CuSe to Cu;sSe and CusSe:.
In the Cu—Se system, CusSe;, CuSe, and CuSe;
phases decompose at higher temperatures, with only
Cuz-.Se and Cu,Se being stable at 703 K [27]. In
general, most scholars have only studied some
thermodynamic properties of CuSe. However, none
of the studies has provided any details concerning
the kinetic mechanism and thermal decomposition
behavior of CuSe.

In the present work, experiments on the
thermal decomposition of CuSe were carried out at
different heating rates by means of a thermo-
gravimetric analyzer (TGA), which has been widely
applied in kinetic studies of metallurgy and
chemicals [28,29]. The kinetic parameters and
mechanisms were detailedly discussed based on the
model-free and model-based analyses. The
decomposition behavior of CuSe was investigated
by a vacuum thermogravimetric furnace. These
efforts would contribute to the understanding of the
decomposition behavior of CuSe and enrich the
database of CuSe decomposition kinetics. In
addition, this research could provide much useful
information for the preparation process of high-
purity CuSe.

2 Experimental

As experimental material, CuSe with the purity
of 99.999%, was from Hangzhou Kaiyada Semi-
conductor Materials Co., Ltd., China, and its
chemical composition is listed in Table 1. It can be
seen that CuSe contains 0.5x107° Pb, 1x107° Fe,
0.5%x107° Sb and a minor amount of Ni, Ag, and Co.

The thermal decomposition experiments were
conducted using a TGA (NETZSCH STA 449 C) in
a 99.999% argon atmosphere. A 10 mg CuSe
sample was heated using a steady stream of Ar
(20 mL/min) through a reaction tube. Samples were
heated at different heating rates of 5, 10, and
20 K/min, respectively. The kinetic parameters were
calculated by increasing the temperature from 298

to 1073 K according to the nonisothermal thermal
decomposition experiments of the TGA.

Moreover, a vacuum thermogravimetric furnace
(Fig. 1) was employed to measure the actual
decomposition rate of CuSe. Then, a crucible
containing 20 g CuSe samples was placed in the
vacuum furnace and subjected to vacuum pyrolysis
experiments at 523 K, 10 Pa, and different time
(20, 40, 60, 80, and 100 min). When the target
temperature was reached, the temperature was
controlled by an automatic control system. The
decomposed volatiles (such as Se) with a high
saturation vapor pressure would be evaporated
and condensed, while residues Cu,Se remained in
the crucible. After decomposition, the crucible and
condenser were cleaned and weighed. The phases
of materials and samples were detected by an
X-ray diffractometer (Mini Flex 600, Japan). The
microstructures of samples were characterized
by scanning electronic microscopy (SEM). The
copper concentrations of samples were detected
by inductively coupled plasma-optical emission
spectroscopy (ICP-OES).

Tablel Chemical composition of 99.999% CuSe (107%)
Co Ag Ni Pb Fe Sb Si Hg Cd CuandSe
<0.2<0.2<0.2<0.5 <1 <0.5<0.5<0.5<0.5 Bal

Vacuum gauge

Thermocouple

— Crucible
® ©
To vacuum
Furnace pump
controller /
Analytical balance

Fig. 1 Schematic diagram of vacuum thermogravimetric
furnace

3 Results and discussion

3.1 Thermodynamics of CuSe decomposition

The Gibbs free energy change (AG) and the
equilibrium compositions of CuSe decomposition
reaction were calculated by HSC Chemistry 6.0
software and the results are shown in Fig. 2. From
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Fig. 2 Theoretical analysis of CuSe: (a) Possible equilibrium composition of CuSe at 273—1673 K; (b—d) Relationship

between AG and temperature T under different pressures

Fig. 2(a), it can be seen that the amount of CuSe is
determined and the possible equilibrium
composition in the Cu—Se system is calculated at
273—-1673 K. Apparently, the amount of CuSe
decreased while Cu,Se and Se gradually increased
at 273—773 K, which was consistent with previous
studies [18,24]. The relationships between AG and
temperature 7 under different pressures are shown
in Figs. 2(b—d). It is evident that the decomposition
temperature of CuSe decreases dramatically when
the system pressure declines.

3.2 Kinetics of CuSe decomposition

The thermogravimetric (TG) and
differential thermogravimetric (DTG) curve of the
CuSe decomposition process at different heating
rates are shown in Fig. 3. Figure 3(a) shows a mass
loss of nearly 28.71% in the TG test, which
corresponds to the stoichiometric conversion of
CuSe to Cu,Se and Se. Figure 3(b) illustrates that
the decomposition process experienced three major
stages: an accelerated reaction at the beginning of

curve

decomposition, an accelerated reaction over a wide
range of temperatures, and a flat reaction at the end
of the decomposition. The fastest rates of
decomposition reactions at heating rates of 5, 10,
and 20 K/min were at 713.5, 740.2 and 770.0 K,

respectively.
To describe the kinetic mechanism of solid-
state decomposition reactions, integral and

differential methods are usually available. The
reaction rate is generally expressed as Eq. (1):

ey
2)

where a is the conversion rate; f() and G(a) are the
differential and integral forms of the dynamic
mechanism function, respectively [30]. f(a)
represents the reaction mechanism function, and
f(@)=1/G(a); k is the rate constant (s ).
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Fig. 3 TG curves (a) and DTG curves (b) of CuSe
decomposition process at various heating rates

where my is the initial sample mass, m, is the sample
mass at time ¢, and m. is the sample mass after
complete conversion from CuSe to Cu,Se and Se.

The conversion degree (from CuSe to Cu,Se
and Se) could be obtained with Eq. (3) during the
thermal decomposition process, which varies
between 0 and 1. The Arrhenius equation gives the
temperature dependence of the rate constant as
shown in Eq. (4):

k=Aexp[—E/(RT)] (&)

where A is the pre-exponential factor (s™"), E is the
activation energy (kJ/mol), and R is the molar gas
constant (8.314 J/(mol-K)). Under a certain heating
rate f (K/min), Eq. (1) could be transformed to
Eq. (5):
do A4
py —ﬁexp[ E/(RT)] f(a) &)
The conversion rate curves for the thermal
decomposition of CuSe at different heating rates are
shown in Fig. 4. Slower heating rates and longer
reaction time led to higher conversion rates. Initially,

the thermal conversion was relatively slow and then
gradually increased. When the conversion rates
were in the range of 0 to 0.1 and 0.9 to 1, the initial
and end stages of the reaction, both had negligible
amounts of decomposition. The conversion rate
increased linearly between 0.1 and 0.9, which was
considered to be the main reaction period for the
decomposition of CuSe.
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Fig. 4 Conversion rate curves of CuSe thermal
decomposition at different heating rates

3.2.1 Model-free analysis

The kinetic parameters for the decomposition
of CuSe are determined by Kissinger—Akahira—
Sunose (KAS), Flynn—wall Ozawa (FWO), and
the Coats—Redfern methods. The KAS method was
used to calculate the apparent activation energy
(E) for the reaction under multi-temperature
conditions [31]. Based on these parameters, the
kinetic equation can be expressed as

m(g}h{%_g% ©
p p

The peak temperature of 7, was obtained by
DTG curves at different heating rates. This value
was substituted into Eq. (6) and the fitted results are
shown in Fig.5 (KAS). The linear correlation
coefficient for the regression equation (R?) was

0.99918, and the formula is as follows:

In ﬁz =In ﬁ —£i=6.27146—1.27081i (7)
£ ) RT, T,

p

According to the regression of Eq. (7) (KAS),
the activation energy E for the decomposition
of CuSe was 10.567 J/mol. The activation energy E
was obtained by the KAS method and verified via
the FWO equation. The peak temperature 7}, in the
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Fig. 5 Thermodynamic equation fitting curves by

different models: (a) KAS; (b) FWO

KAS equation was used to replace temperature 7 in
Eq. (8) (FWO method), and linear fitting results are
shown in Fig. 5. When the heating rate £ is fixed,
the values of the activation energy and pre-
exponential factor can be obtained by plotting 1g £
versus 7' (FWO method) with a linear correlation
coefficient of 0.99925 for the regression equation as
follows:

le p=le—2E 5 315-0.4567-L =
RG(a) RT
9.3282—0.61598% ®)

The average value of activation energy
determined by the FWO method was 11.214 J/mol.
The FWO method was used to ascertain kinetic
parameters with the kinetic mechanism function
shown in Eq. (8). The activation energy calculated
by the KAS method (Ex) was slightly lower than
that of the FWO method (Er). The results are as
follows: (Er—Ex)/Er=0.0577<0.1. It is verified that
the activation energy calculated by the KAS method
is highly reliable.

3.2.2 Model-base analysis

To verify the above calculations, the Coats—
Redfern method was wused as a modularized
function method, and shown by Eq. (9), the plot of
In(G(a)/T*) versus T~' gives the activation energy
and pre-exponential factor for different reaction
conditions from the slope and intercept of the curve,
respectively.

T PE E RT
According to Eq.(9), if the reaction
mechanism  function is correctly selected,

In[G(a)/T?] and T' should have a linear
relationship. The expressions of various reaction
mechanism functions were substituted into Eq. (9).

TG and DTG data were employed to build
In[G(a)/T*]-T™" curve as shown in Fig. 6. Table 2
summarizes the reaction rate expressions and the
corresponding linear correlation coefficients for
various mechanistic models. It illustrated that the
correlation coefficients for the reaction-order
models R3 and D3 are the closest to 1. However,
the activation energy calculated for the R3 model
is 13.199 J/mol, which is closer to the above
calculation results by KAS and FWO. Therefore,
the reaction-order model R3 is the most likely
mechanism function under the present experimental
conditions. The calculated values of activation
energy and pre-exponential factor values at different
heating rates are presented in Table 3.

The kinetic model and parameters derived
from the Coats—Redfern method were combined
with the data in Table 3, thus the kinetic equation
can be expressed as

-10
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Fig. 6 Curves of In[G(a)/T?] versus 7' at heating rate of
5 K/min
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Table 2 Solid-state reaction rate expressions and correlation coefficients for different reaction models

Reaction model Differential form fla)
First-order model (F1) I-a
Second-order model (F2) (1-a)?
Third-order model (F3) (1-a)?

Avarami—Erofe’ev (A2)
Avarami—Erofe’ev (A3)

2D-contraction model (R2) 2(1-a)'?
3D-contraction model (R3) 3(1—a)??
2D-diffusion model (D2) [~In(1-a)]™

3D-diffusion model (D3)
Power law (P2) 201"
Power law (P3) 3a?3

2(1-a)[~In(1-a)]"?
3(1=a)[~In(1-a)]*?

(3/2)(1=a[1- (1-a)'"] !

Integral form G(a) Correlation coefficient
—In(1-a) 0.9978
(I—a) -1 0.97893

[(1~a)2-1]/2 0.95331
[In(1-a)]"? 0.99749
[~In(1-a)]'" 0.99711
1-(1-a)'? 0.9998
1-(1-a)' 0.99987
(1-a)ln(1-a)+a 0.98109
[1-(1-)"1? 0.99987
a'’? 0.99304

a' 0.99059

Table 3 Activation energy and pre-exponential factor by
Coats—Redfern method

B/(K-min™") E/(J-mol™) Als!

5 13.199 —0.387

10 11.856 —0.034

20 11.976 —0.035

Average value 12.344 0.152
%=0.456exp(_1 ;‘ 85 j(l—a)m (10)

From kinetic analysis, changing the heating
rate will result in a variation of the activation
energy of the CuSe decomposition. The kinetic
parameters are as follows: activation energy
of 12.344 J/mol and pre-exponential factor of
0.152s7".

3.3 Thermal decomposition experiments of CuSe

According to thermodynamic calculations, the
thermal decomposition experiments of CuSe were
carried out at 523 K and 10 Pa. The evaporation
resistance of Se is neglected during the vacuum
thermal decomposition of CuSe. Hence, the
evaporation rate of Se is approximately equal to the
conversion rate of CuSe. In this process, slight
variations in mass, pressure, and temperature can be
recorded by the balance system, and their signals
are transmitted to the computer terminal. The actual
experimental conversion rate of CuSe will be found
by measuring the mass change of CuSe per unit
time and area during the actual decomposition
process. Theoretical maximum evaporation rate of
Se at 523 K is calculated to be 0.0497 g/(cm* min)
by the Langmuir—-Knudsen equation [32]. Finally,

the time stability range of 200—2200 s with mass
can be linearly fit to obtain reaction rate kexp
as shown in Fig.7 and the experimental
decomposition rate at 523 K was directly calculated
to be 0.0030 g/(cm*min) using the following
formula:

@, =2.624x10a,p° /—IT” (11)
Am kexp
NS S (12)

where wca is the theoretical decomposition rate in
g/(cm?-min); o is the accommodation coefficient;
p* is the saturation vapor pressure of 5.01 Pa;
M 1is the relative molecular mass of 78.96; T is the
melt surface temperature of 523 K; weyp is the
experimental actual decomposition rate of CuSe
and represents the mass change (Am) of CuSe in a
certain time (Af) and area (S=7.065 cm?).
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Fig. 7 Linear fitting results for experimental value of kexp
at 523 K
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Meanwhile, vacuum thermal decomposition
experiments were conducted at 523 K, 10 Pa, and
20, 40, 60, 80, and 100 min, respectively, and the
results are shown in Fig. 8. It can be seen that the
volatile rate of Se increased from 2.4% to 6.5%
from 20 to 100 min and that Se contained a certain

7 600
A Wse 65‘
L W 4
6 = Tifearit (R?=0.9912) 200
5¢ 1400
< =
34t 4300 3
2 2
3t 190 1200
2.4
2| 91 1100
40 32 §
NN 0
20 40 60 80 100
Time/min

Fig. 8 Relationship between volatile rate of Se (wse),

copper content (wcy), and time during decomposition of

CuSe at 523 K

C
Cu Raw material CuSe (m) u

Element wt% at.%
Cu 44.07 49.47 Cu
Se 55.93 50.53

Total 100.00 100.00

Cu

lC‘u Se Se
0 4 8 12 16 200 4 8
E/keV

Cu

amount of Cu, fluctuating between 32x10 °—
270x107°%. The reason for this result could be that
Cu,Se enters the condensate together with Se due to
the adjacent saturation vapor pressure [33]. The
results of XRD (Fig. 9) and SEM (Fig. 10) show
that CuSe was decomposed into Cu,Se and Se
under the conditions of 523 K, 100 min, and 10 Pa.

&—Se ¢ —Cu,Se v— CuSe

Decomposition volatile Se

-
#E e oaa

l » Residue Cu,Se
x *

CuSe material

1 1

10 20 30 40 50 60 70
20/(°)

Fig. 9 XRD patterns of CuSe material and decomposition
residues and volatiles at 523 K, 100 min, and 10 Pa

80 90

Residue Cu,Se (n) Se Volatile Se (0)
Element wt% at.% Element wt% at.%
62.49 6743 Se 100.00 100.00
37.51 32.57 Total ~ 100.00 100.00
100.00 100.00
g . Al : Se Se i
12 16 200 4 8 12 16 20

E/keV

E/keV

Fig. 10 SEM images (a—1) and EDS results (m—o0) of CuSe raw material (a—d), decomposition residues (e—h) and

volatiles (i—1) at 523 K, 100 min, and 10 Pa
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4 Conclusions

(1) Thermal decomposition kinetic parameters
and mechanism of CuSe were discussed based on
model-free and model-based analyses. The results
showed that the R3 model was identified as the
most probable mechanism function under the
present experimental conditions. The average
values of activation energy and the pre-exponential
factor were 12.344 J/mol and 0.152 s, respectively.
The kinetic equation was obtained. The actual
decomposition rate of CuSe was found to be
0.0030 g/(cm* min).

(2) The vacuum decomposition
experiments of CuSe were conducted, and the
results indicated that CuSe decomposed into Cu,Se
and Se by vacuum decomposition under the
condition of 523 K, 100 min, and 10 Pa, which was
consistent with the thermodynamic calculation
results.

thermal
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CuSe A5 EHIIERVIR 1T B SLIET0IE
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1 BB TR Jane K TR RO B 650093;
2. RAETRY e S5nlE LR, BB 650093;
3. R T RY sHAAOSBRETHEHARE, BY 650093;
4. BB T RS BA0A68E RIS ER A E X E LR E, BYW 650093

7 E: FARESNIUTGA) TEAFFHELEZE T CuSe FHATHAMRLLS . BT OB BURIG BLR HU AT, )
W& CuSe 72 )15 ZHANLEL, JER I FAIREN BT CuSe B M I RAT . BRRY], 16 HBTHISE
BT, R3 RHATREMIBA R E, HAFLRERIR AT A 1 (-T2 70 5179 12.344 J/mol M1 0.152 57! CuSe 5%
b o3 i 54 0.0030 g/(cm?-min).
KBEA): CuSe; b AFSERBNIIF: HLEE
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