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Hardness and elastic modulus of microcastings
by nanoindentation
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(1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. Micro/nano Technology Research Center, Harbin Institute of Technology, Harbin 150001, China)

Abstract: Micrometer scale gear was manufactured by new micro-precision casting technology based on metal mold, and
its hardness and elastic modulus were measured by nanoindentation. The results show that the hardness of microcastings
is dependent on the grain size, and decreases with the increase of the grain size. Value of elastic modulus scattered. The
hardness of microcastings is higher than that of conventional castings, the maximum up to 1.70 times, but the elastic

modulus decreases by about 50%. The property change is caused by the microstructure of non-equilibrium solidification

from rapid cooling.

Key words: ZnAl4 alloy; micro-precision casting; nanoindentation; nanohardness; elastic modulus

B35 SRR LB 7 TR R NS A ) 9 Fg - AT
S22 AR 1) 4 S8 TR P F 1) % ok i 3z 2 it . 1
R s T2 R 4 S AR A S % T R R T —
FIanin T 1%, f#[¥ ) BAUMEISTER %54 H T3
TG T2 A RN R B i T A R O i i
T2, bR wE LG-RPC FR0BU H A Tl k2410
(R FRABARGRSE T B ok % i T2, IRl
TR RSP ORI 1 o SR, E RGOS %
PR TSR R, TEEENRZE, UAH
SRR AR, Kk BAUMEISTER $2H i H 3

H£EWHE: HEARRIEIEE R I)IUH (50475028)
Yk BHEA: 2007-07-28; 1&iT HH#A: 2007-11-13

BITESE: EUE, Mt ik 0451-86402266; E-mail: hitrmx@163.com

P R R < ORI 2 A R R I
S, AR TR TR R O i T, F
ML T 2% 7 B A =4 222 R ok e
N

(DS aRI R [ S K27 S S e B W AN T
st JRL XS K W R S ) “A PR RE A TS
SRR eI T 2P AR LR AR, T
P U HEAR RO OAEROR 2, 3 AR K T B .
B P S ARG, AR A R 4K
JRVEE OV E ST IR D1 2 MR . 90K R SRR R T



232 T EA G R AR

2008 F2 H

SRR R LR IV RTINS YRR IR SN PRI A
B 2R REMA T 7%, AR A S 6 ) o R
IR R ARG T, R R N R
SEARAF T — R BRI B EN 2 th 22, FFH OLIVER #
PHARR J7 VAR INE8th Ze d-AT 404 i b, S48 K
FEIRAE TRV P FEAABGE AR A, B TTA5 2044 K}
[P 4P K At P ANt PE AR (. PETHICA. OLIVER F
PHARR Z5!"PUL R T AR RN T B, 48 T1%
LR R FE(CSM), MR A NIE W] PAAE
BAAN IR P SR 7 Bt R N TR T2 8 P 3 A
SEAE, IXRERURT LA AL S R B 1 Bl A A
ek

1 SLIG

11 HsHasE

WEIER R Tl B35 I Zn-Ald &4, SRt
A AR D) 3.79%A1, 0.029%Mg, %
<0.2%, HARH Zn. WK BAIN ZnAl & G855,
FEHATUB N A RN AR RS 460 C, B4R 430 CHY
TEREEIE BN FEIE Y, OB El 1
Pime HEARTEb D NTE AR 600 pm, A FEHIE
%20 300 pm, K 400 pm. HE 1 AT, SR RO
RAF, FRPERTEW, &0 Al ek, R
PTG e 5 et R e AR

B1 wkEIiK
Fig.1 Morphology of microgear
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Fig.2 Typical load—depth curves of microcastings
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Fig.3 Experiment results of microgear teeth: (a) Nanoindentation positions; (b) Hardness—depth curves; (c) Elastic modulus—

depth curves
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Fig.4 Experimental results of microgear shaft: (a) Nanoindentation positions; (b) Hardness—depth curves; (c) Elastic modulus—

depth curves
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Table 1 Comparison between hardness of microcastings and

conventional castings

Position Hardness/GPa mofli?j:/Z}Pa
Tooth tip 1.14 1.04 67.26
middle 1.08 0.97 72.37
root 1.05 0.98 58.69
core 0.96 0.91 56.97
Shaft position 1 0.98 0.94 71.08
Shaft position 2 0.92 0.90 62.58
Shaft position 3 0.87 0.87 60.33
Shaft position 4 0.86 0.85 55.41

Conventional casting 0.72 130
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Fig.5 Distribution diagrams of elastic modulus and hardness
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Fig.7 SEM images of microstructures of microgear casting:

(a) Tooth tip; (b) Tooth core
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Table 2 Grain sizes of different sites of microgear casting

Position Average grain size/um
Tooth tip 4.5
Middle 6.3
Root 8.2
Core 10.3
Gear shaft 9.8
Conventional casting 85
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