文章编号: 1004-0609(2008)03-0516-07

Al_n^+ (*n*=2~13)团簇分裂机理的计算

李贵发,彭 平,周惦武,韩绍昌

(湖南大学 材料科学与工程学院, 长沙 410082)

摘 要: 基于 Al_{n+m} ⁺团簇分离方式主要以离解出中型或带电单 Al 原子为主的实验结果,采用线性同步转变(LST) 和二次同步转变(QST)方法考察了 $Al_{n+m}^+(n+m \leq 13)$ 团簇在双分模式下的不同分裂过程,并通过分裂吸收热 ΔH_{R-P} 和分裂激活能 ΔE_{R-T} 等的计算,在能态结构上分析了 $Al_n^+(n=2\sim13)$ 团簇的分裂路径及其机理。结果表明: $Al_n^+(n=2\sim13)$ 团簇以分裂出电中性或带电 Al 原子模式吸热 ΔH_{R-P} 和所需分裂激活能 ΔE_{R-T} 最少,而分裂成原子数相差较小的两个较大团簇所需裂解能量最多,因此, $Al_n^+(n=2\sim13)$ 团簇主要以 $Al_n^+ \rightarrow Al + Al_{n-1}^+$ 或 $Al_n^+ \rightarrow Al^+ + Al_{n-1}$ 路经裂解。

关键词: Al_n⁺团簇; 分裂机理; 密度泛函理论; 线性同步转变方法
 中图分类号: O 641
 文献标识码: A

Calculation of decomposition mechanism of Al_n^+ (*n*=2~13) clusters

LI Gui-fa, PENG Ping, ZHOU Dian-wu, HAN Shao-chang

(School of Materials Science and Engineering, Hunan University, Changsha 410082, China)

Abstract: Based on the experimental result of Al_{n+m}^+ clusters decomposed by means of a isolated Al atom or cation, the disassociation route and mechanism of Al_{n+m}^+ ($n+m \le 13$) clusters in the $Al_n^+ + Al_m$ (n=1-12, m=1-12) mode were investigated by linear synchronous transit (LST) and quadratic synchronous transit (QST) method. Several parameters, such as the ionization potential, the endothermic reaction heat ΔH_{R-P} and the dissociation barrier energy ΔE_{R-T} of Al_{n+m}^+ ($n+m \le 13$) clusters were calculated. Comparison of ΔH_{R-P} and ΔE_{R-T} requested in the disassociation route reveals the least energy of a isolated Al atom or cation from the Al_{n+m}^+ clusters is related to bigger ΔH_{R-P} and ΔE_{R-T} values, while a big cluster decomposites into two small clusters. The energetics difference between routes should be responsible for the preferential route of dissociation of Al_n^+ (n=2-13) clusters in terms of $Al_n^+ \rightarrow Al + Al_{n-1}^+$ or $Al_n^+ \rightarrow Al^+ + Al_{n-1}$. **Key words:** Al_n^+ cluster; decomposition mechanism; density functional theory; linear synchronous transit

团簇作为特殊物相,近年引起了人们广泛的研究 兴趣。采用气体冷凝、磁控溅射、激光热解及溶胶凝 胶等方法,人们已制备出多种电中性或带电的金属团 簇^[1],并通过对其离化能^[2]与结合能^[3]等结构参数的测 试与计算,考察了其稳定的结构形态^[4]、裂解方式^[1] 以及原子数 *n* 对其电磁特性的影响^[5-6]等。对于 Al_n⁺ 团簇的裂解,也有很多学者对此进行过研究,如 JARROLD 等^[7]在惰性气体氩环境中以 5.25 eV 的轰击 能量采用撞击分离(Collision induced dissociation, CID) 方法研究了 Al_n^+ (*n*=3~26)团簇的离化能和分离方式, HANLEY 等^[8] 和 RAY 等^[3]在惰性气体氙气氛下、分 别以 0~10 eV 和 1.88~6.99 eV 轰击能量研究了 Al_n^+ (*n*=2~7)和 Al_n^+ (*n*=7~17)团簇的裂解特性。虽然不同实 验测得的分离能绝对值不等,但总体趋势一致,即 Al_n^+

基金项目: 教育部科技重点资助项目(104139);教育部博士点基金资助项目(20050532006)

收稿日期: 2007-06-18; 修订日期: 2007-12-25

通讯作者: <u>彭</u>平,教授,博士;<u>电话:0731-8821610</u>;<u>E-mail:ppeng@hnu.cn</u>

团簇的分离方式主要以分离中型或带电单 Al 原子为 主。后来,INGÓLFSSON 等^[9]进一步在惰性气体氩气 氛下,以 0.1~10 eV 为轰击能量,用 CID 方法研究了 Al_n⁺(*n*=2~11)团簇的分裂行为,并采用分子轨道理论对 Al₈⁺团簇的分离行为进行了分析,确认从 Al_n⁺(*n*=2~11) 团簇中分离出中型或带电单 Al 原子为其主要模式。为 了分析和更好地理解这些团簇主要以这种方式进行分 解,本文作者采用基于密度泛函的分子轨道理论,通 过化学反应动力学的方法,计算了在两相分离模式下 Al_n⁺(*n*=2~13)团簇不同分裂路径时的分裂吸收热与分裂 激活能,以揭示 Al_n⁺(*n*=2~13)团簇的分离机制和深入开 展对 Al_n⁺团簇分解演化行为的研究。

1 计算模型与方法

基于 RAO 等^[4]和 LLOYD 等^[10]的研究结果,构 造了如图 1 所示的稳态 Al_n(*n*=2~13)团簇计算模型,初 始 Al—Al 键长设为 *d*=0.286 3 nm。计算采用基于密度 泛函理论(Density function theory, DFT)的 Dmol 程序。 几何优化与总能计算时,电子交换关联能函数采用 GGA 近似的 PBE 形式^[11],势函数取全电子位势,电 子波函数采用带 d 轨道的双数值基(Double-numerical quality basis set, DN) 函数^[12],布里渊区积分采用 Monkhorst-Pack 形式的特殊 K 点方法^[13]。自洽 (Self-consistent field, SCF)计算时,体系总能量和电荷 密度收敛精度设为 10⁻⁵原子单位。能量计算前先进行 几何优化,以取得团簇模型的局域稳定结构,优化时 其精度设置为:能量不大于 50 μeV/atom,应力不大于 1 eV/nm,位移不大于 0.02 nm。计算时对团簇的对称 性进行限制。然后,采用线性同步转变(Linear synchronous transit, LST)与二次同步转变(Quadratic synchronous transit, QST)方法^[14]进行分裂模拟和过渡 态结构搜索。为了简化,本文作者仅考察了由一个大 团簇分裂为两个小团簇的"双分模式"。

在分裂模拟之前,首先选取 Al₂ 团簇测试团簇间 的有效分离距离,测试结果如图 2 所示。由图 2 可见, 当两个团簇间的中心距离 *D* 不小于 0.7 nm 时,体系总 能量趋于恒定,即可认为是两个无相互作用的独立团 簇,为此,本文作者在采用 LST/QST 进行团簇生长模 拟时,0.7 nm 被设置成了独立团簇间的最低间距。

线性同步转变与二次同步转变方法是 HALGREN 等^[14]于 1977 年提出的研究化学反应路径的方法,其 计算方法如图 3 所示。首先给出团簇反应物--生成物 的分离路径,在此路径上取一定数量的化学反应点 2~5,连接反应物1点和生成物6点,此即LST 路径。 然后,在LST 路径上找到能量最大的点4,应力是能 量对位移的偏导数,而过渡态结构对应"山脊"的力 为零,即能量对位移的偏导数为零时,又可以找到一 条力(F)为零的路线 4-5'-3",直到找到一个比LST 路 径中高能量点4要小的第二个高能量点3",这条计算 路径被称作共轭梯度搜索。最后再以3"为最高的能量 点,按照线性同步转变(LST)计算方法进行计算 1-2"-3"-6 各点对应团簇结构的能量,即二次同步转变 (QST)。循环搜索,直到找到过渡态结构对应的能量 点为止^[14]。

图 1 Al_n⁺(n=2~13)团簇计算模型

Fig.1 Calculation models of $Al_n^+(n=2\sim13)$ clusters

图 2 双 Al₂ 团簇体系的总能量与两团簇中心间距的关系 Fig.2 Relationship between total energies and distance of two

图 3 LST/QST 计算方法示意图

Fig.3 Schematic diagram of LST/QST method

2 分析与讨论

2.1 Al_n⁺ (n=2~13)团簇离化势

作为测试,本文作者采用下式计算了 Al_n⁺(2~13) 团簇的离化势(*E*_{IP})^[4]:

$$E_{\rm IP} = E({\rm Al}_n^+) - E({\rm Al}_n) \tag{1}$$

式中 $E(Al_n^+)$ 为带单位正电荷 Al_n 团簇的总能量; $E(Al_n)$ 为中性 Al_n 团簇的总能量; n 为 Al_n 团簇的原子 数。计算结果如图 4 所示。

由图 4 可见,虽然本研究计算的离化势(E_{IP})比实 验值^[2]及 RAO 等^[4]采用 Gaussian 程序 GGA 近似得到 的结果略低,但误差均在 5%的范围内。在 n 为 4, 6, 8 和 13 时, E_{IP} 出现峰值;在 n 为 7 和 10 时, E_{IP} 出现

图 4 $Al_n^+(2\sim13)$ 团簇离化势与计算值^[4]和实验值^[2]的比较 Fig.4 Comparison of ionization potentials of $Al_n^+(2\sim13)$ clusters with experimental data^[2] and calculated values^[4]

谷值,主要是源于 Al_n 团簇电子壳层结构的幻数特性,即 Al_n 团簇在 n 为 6 和 13 时,外层电子为 18 和 39, 难失去一个电子而变成带正电团簇,因此,离化势较 高;而当 n=7 时,外层电子为 21,易失去一个电子而 成为满壳层结构,因而离化势较低;当 n 为 4,8 和 10 时,离化势不能很好地用外层电子数解释,还要考 虑到团簇几何结构的影响。三者在整体变化趋势上一 致表明本研究采用的计算方法与条件基本合适。

2.2 Al, 团簇的分裂

Al_n 团簇分裂有多种模式,除稳定组态外,Al_n (n=2~13)团簇如 Al₆还存在某些亚稳结构^[15],作为团 簇分裂机制研究的第一步,本研究在此仅考察了稳态 Al_n⁺(n=2~13)⁺ 团簇的双分模式,即 Al_{n+m}⁺→Al_n⁺+Al_m 模式,其中 Al_{n+m} ⁺为团簇分裂反应物; Al_n⁺和 Al_m为 团簇分裂生成物; n 取为 1~12; m 取为 1~12, n+m≤ 13。采用线性同步转变(LST)与二次同步转变(QST)方 法计算得到的这种双分模式下体系总能量随路径参数 的变化曲线如图 5 所示。由图 5 可见, Al_{n+m}⁺分裂成 Al_n^+ 和 Al_m 时体系总能量升高,表明 Al_n^+ (*n*=2~13)团 簇双分模式下的分裂为一吸热过程;在部分分裂模式 下,团簇分裂出现了能垒,表明其间存在过渡态。根 据化学反应动力学可知,反应吸收热和反应活化能是 表征化学反应进行难易程度的两个重要参数,即反应 吸收热越多与反应活化能越大,则需要外界给予的能 量越多,反应就相对难以进行。为此,本文作者采用 下式计算了这种双分模式下的分裂吸收热ΔH_{R-P} 与分 裂激活能ΔE_{R-T}:

Al₂ clusters

$$\Delta H_{\rm R-P} = \{ [E_{\rm P1}({\rm Al}_n^+) + E_{\rm P2}({\rm Al}_m)] - E_{\rm R}({\rm Al}_{n+m}^+) \} / (n+m)$$
(2)

$$\Delta E_{\rm R-T} = \{ E_{\rm T} ({\rm Al}_{n+m}^{+}) - E_{\rm R} ({\rm Al}_{n+m}^{+}) \} / (n+m)$$
(3)

式中 $E_{R}(Al_{n+m}^{+})$ 为团簇反应物的总能量; $E_{P1}(Al_{n}^{+})$ 和 $E_{P2}(Al_{m})$ 分别为分裂后产物 Al_{n}^{+} 和 Al_{m} 团簇总能量; $E_{T}(Al_{n+m}^{+})$ 是体系过渡态总能量。计算结果如表1所列。

比较表 1 中本研究计算值与 INGÓLFSSON 等^[9]采用 CID 方法测量的实验值可见:本研究计算值比实验值 稍小,因第一原理计算的是基态团簇的能量,忽略了 实验中温度的影响。对于 $Al_m^+ \rightarrow Al^+ + Al_{m-1}$ 分离模式, 当 *m*=2 时,计算值与实验值差别较大;当 *m* 为 3~10 时,则基本相同;从 *m*=5 开始,吸收热 ΔH_{R-P} 呈递减 趋势;对于 $Al_m^+ \rightarrow Al_2 + Al_{m-2}^+$ 和 $Al_m^+ \rightarrow Al_3 + Al_{m-3}^+$ 分离

图 5 Al_{n+m}^+ (*n*=1~12, *m*=1~12) 团簇在 $Al_n^++Al_m$ 分裂模式下体系能量随分裂轨迹变化示意图 **Fig.5** Schematic diagrams of total energies of system with path coordinates in bi-dissociation mode $Al_{n+m}^+ \rightarrow Al_n^++Al_m$

表1 Al_{n+m}^+ (*n*=1~12, *m*=1~12)团簇在 $Al_n^+ + Al_m$ 分裂模式下的反应吸收热 ΔH_{R-P} 与分裂激活能 ΔE_{R-T}

Table 1 Endothermic reaction energies $\Delta H_{\text{R-P}}$ and dissociation activation energies $\Delta E_{\text{R-T}}$ of Al_{n+m}^+ (*n*=1-12, *m*=1-12) clusters in $Al_n^+ + Al_m$ mode (eV/atom)

n	Parameter	<i>m</i> =1	<i>m</i> =2	<i>m</i> =3	<i>m</i> =4	<i>m</i> =5	<i>m</i> =6	<i>m</i> =7	<i>m</i> =8	<i>m</i> =9	<i>m</i> =10	<i>m</i> =11	<i>m</i> =12
		0.141	0.341	0.231	0.267	0.299	0.246	0.206	0.192	0.187	0.188	0.246	0.208
1	$\Delta H_{\rm R_{*}P}$	0.625 ^[9]	0.453 ^[9]	0.230 ^[9]	0.326 ^[9]	0.275 ^[9]	0.264 ^[9]	0.159 ^[9]	0.143 ^[9]	0.133 ^[9]	0.130 ^[9]		
	K-1	±0.180	± 0.060	± 0.080	± 0.060	± 0.040	± 0.050	± 0.050	± 0.040	± 0.040	± 0.040		
	$\Delta E_{\text{R-T}}$						0.247	0.364	0.256	0.190			
2	$\Delta H_{\mathrm{R-P}}$	0.312	0.467 0.472 ^[9]	0.483 0.512 ^[9]	0.487	0.499	0.389	0.347	0.325	0.202	0.382	0.416	
	$\Delta E_{\text{R-T}}$						0.396		0.329	0.316			
3	$\Delta H_{\text{R-P}}$	0.234	0.439	0.478	0.539	0.505	0.413	0.378	0.253	0.324	0.477		
			0.800 ^[9]	1.170 ^[9]									
	$\Delta E_{\text{R-T}}$				0.553	0.514	0.419	0.383	0.390	0.401	0.478		
4	$\Delta H_{ ext{R-P}}$	0.273	0.496	0.541	0.547	0.520	0.445	0.304	0.376	0.426			
			0.812[9]	1.140 ^[9]									
	$\Delta E_{\text{R-T}}$			0.543		0.586	0.453	0.305	0.502	0.581			
5	$\Delta H_{\text{R-P}}$	0.301	0.513	0.508	0.523	0.510	0.337	0.398	0.451				
	$\wedge F$		0.857	0.515	0.530		0 432	0.486	0.500				
	ΔL_{R-T}	0.247	0.304	0.313	0.330	0.335	0.452	0.480	0.300				
6	ZIII R-P	0.247	0.394 $0.824^{[9]}$	0.414	0.444	0.555	0.372	0.417					
	$\Delta E_{\text{R-T}}$	0.262	0.398	0.425	0.446	0.429	0.505	0.541					
7	$\Delta H_{\text{R-P}}$	0.198	0.351	0.374	0.300	0.391	0.414						
			0.278 ^[9]	0.497 ^[9]									
	$\Delta E_{\text{R-T}}$	0.294		0.838	0.308	0.564							
8	$\Delta H_{ ext{R-P}}$	0.196	0.336	0.257	0.380	0.453							
			0.400[9]	0.636[9]									
	$\Delta E_{\text{R-T}}$	0.243	0.337	0.378	0.383	0.490							
9	$\Delta H_{\text{R-P}}$	0.188	0.210	0.327	0.431								
	٨F	0 101	0.383	0.426	0.541								
	ZLR-T	0.171	0.385	0.420	0.541								
10	$\Delta H_{\text{R-P}}$	0.190	0.392	0.478									
	$\Delta E_{\text{R-T}}$												
11	$\Delta H_{ ext{R-P}}$	0.241	0.421										
	$\Delta E_{\text{R-T}}$												
12	$\Delta H_{\text{R-P}}$	0.214											
	$\Delta E_{\text{R-T}}$												

模式,实验值比计算值稍大,但都在 Al₇⁺处出现了极 大值,两边呈递减趋势。由于 Al₇⁺团簇外层电子数为 20,满足闭壳层结构而表现出高稳定性,较难分裂。 总体上看, Al_{n+m}⁺团簇以分离中性或带单位电荷的 Al 原子为主,与实验结果^[9]变化趋势基本一致。

本研究将基于图 5 与表 1 的计算结果,进一步对 Al_n⁺(n=2~13)团簇的分裂模式进行分析。

2.2.1 Al₂⁺~Al₅⁺团簇

对于 Al_2^+ 团簇,只有一种分裂模式,即分离出一 个中性和一个带正电的 Al 原子。对于 Al_3^+ 团簇,分裂 有两种情况,即分离出一个中性 Al 原子或分离出一个 带单位电荷的 Al 原子。由图 5(a)可见,它们都是不需 克服能垒的吸热反应,比较其分裂吸收热(ΔH_{R-P})(见表 1)可见: Al_2^+ 团簇的分离吸收热 ΔH_{R-P} (0.312 eV/atom 和 0.341 eV/atom)小,说明 Al_2^+ 是一个活跃性较强的团簇,因 此,实验中检测到的 Al2⁺团簇比 Al3⁺团簇多^[9]。

对于 Al_4^+ 与 Al_5^+ 团簇,其分离除了产生一个中性 或带单位电荷的 Al 原子这种简单模式外,还出现了一 种分离成两个小团簇的模式,即分离成 Al_2^+ 和 Al_3^+ 。 由图 5(a)可见,不论是分裂成原子的简单模式,还是 分裂成大团簇的复杂模式,它们都不需克服能垒,比 较表 1 中其分离反应热 ΔH_{R-P} 可见, $Al_4^+ \rightarrow Al_2^+ + Al_2$ 比 $Al_4^+ \rightarrow Al^+ + Al_3$ 和 $Al_4^+ \rightarrow Al + Al_3^+$ 吸热多, $Al_5^+ \rightarrow Al_2^+ +$ Al_3 与 $Al_5^+ \rightarrow Al_2 + Al_3^+$ 比 $Al_5^+ \rightarrow Al^+ + Al_4$ 和 $Al_4^+ \rightarrow Al+$ Al_4^+ 吸热多,表明小团簇分裂出带电与电中性单 Al 原 子比分裂成两团簇要相对容易。

2.2.2 Al₆⁺~Al₇⁺团簇

由图 5(b)可见,与面型 Al2~Al4 团簇类似,体型 Al₆团簇的分裂也是不需克服能垒的吸热过程,但同为 体型结构的 Al₇ 团簇,其分裂则与 Al₂~Al₆ 团簇不同, 在分裂过程中出现了过渡态,分裂过程需克服一定能 垒。对于 Al₆团簇, 共有 5 种分裂方式: 分别分裂成 Al_n^+ (*n* 为 1, 2, 3, 4, 5)。由表 1 可见, 分裂吸收热 ΔH_{R-P} 最小的是分裂出中性或带单位电荷 Al 原子的模式,即 $Al_6^+ \rightarrow Al^+ + Al_5$ 和 $Al_6^+ \rightarrow Al + Al_5^+$, ΔH_{R-P} 分别为 0.299 与 0.301 eV/atom。但比较两者可知,分离出 Al⁺又相 对容易些。对于 Al₇⁺团簇的 6 种可能分裂方式,大部 分分裂路径存在反应能垒 $\Delta E_{\rm R-T}$,而有部分分裂路径 $(如Al_7^+ \rightarrow Al_2^+ + Al_5 和 Al_7^+ \rightarrow Al_5^+ + Al_2)$ 则只有分裂吸收 热ΔH_{R-P}。由于能垒只是使分裂需要的热能有所增加, 即额外增加($\Delta E_{R-T} - \Delta H_{R-P}$)热能,因此,对于存在能垒 的团簇分解,比较其反应能力只需用其反应能全 $\Delta E_{\text{R-T}}$ 替代其分裂吸收热 ΔH_{R-P} ,如 $Al_7^+ \rightarrow Al^+ + Al_6$ 和 $Al_7^+ \rightarrow Al + Al_6^+$ 模式,其分裂吸收热 ΔH_{R-P} 分别为 0.246 与 0.247 eV/atom, 但由于分别存在分解能 ΔE_{R-T} = 0.247 与 0.262 eV/atom, ΔE_{R-T} 分别比 ΔH_{R-P} 高 3 与 15 meV/atom,因此其反应能力的比较将只比较其 ΔE_{R-T} 的大小。从表 1 可看出, Al₇⁺团簇分裂需要外界提供 能量最少的分解路径是 Al₇⁺→Al⁺+Al₆ 和 Al₇⁺→Al+ Al₆⁺模式,即分裂出中性或带单位电荷 Al 原子的模 式,所需能量分别为 0.247 和 0.262 eV/atom; 分离出 Al^+ 比分离出 Al 相对容易,其结果与面型 $Al_2^+ \sim Al_5^+$ 团 簇类似。

比较图 1 所示 Al₆⁺与 Al₇⁺团簇的几何结构可见, Al₆⁺ 团簇为八面体结构,而 Al₇⁺团簇是十面体结构。 前者具有晶体结构单元特性,后者具有非晶与准晶结 构单元特征。研究结果表明:无论是具有晶体结构特 性的团簇,还是具有非晶或准晶结构特征的团簇,其 带正电团簇的分解都趋向于分裂出中性或带单位电荷 Al 原子为主。

2.2.3 $Al_8^+ \sim Al_9^+$ 团簇

与八面体结构 Al⁺团簇一样, 具有 C2h 对称性的 Al₈⁺团簇与具有 C2v 对称性的 Al₉⁺团簇, 图 5(b)显示 其团簇分裂大部分为需要克服能垒的吸热反应。对于 Al₈⁺团簇,除分裂成 Al₄⁺+Al₄外,其他分裂方式都存 在分裂能垒。比较表 1 中分裂反应热ΔH_{R-P}和反应能 量最多,达0.547 eV/atom,而分裂出中性和带单位电 荷 Al 原子时所需能量最少,分别为 0.294 与 0.364 eV/atom。对于Al₉⁺团簇,除分裂成Al₂⁺+Al₇和Al₂+Al₇⁺ 外,其他分裂方式都存在分裂能垒,其中需能最多也 是分裂成大团簇 $Al_5^++Al_4$ 或 $Al_4^++Al_5$ 的分解路径,分 别为 0.530 与 0.586 eV/atom, 需能最少也是分裂出中 性或带电荷 Al 原子的分解路径,分别为0.243 与0.256 eV/atom。与 $Al_2^+ \sim Al_6^+$ 团簇不同,最可能的分解路径 不是分离出带电Al⁺原子,而是分离出电中性Al原子, 这与 INGÓLFSSON 等^[9]实验测试结果一致。

2.2.4 Al₁₀⁺~Al₁₃⁺团簇

由图 1 可见, $Al_{10}^+ \sim Al_{13}^+$ 团簇都具有某些 5 重对称性元素,因此,也是非晶性团簇。由图 5(c)可看出, Al_{10}^+ 团簇的分解除 $Al_{5}^+ + Al_{5}$ 路经外,其他路径都出现 了 过 渡 态,需能 最 多 的 分 解 路 径 为 $Al_{5}^+ + Al_{5}$, $\Delta H_{R-P}=0.510 \text{ eV/atom}$,需能最少的分解路径为 $Al^+ + Al_{9}$ 与 $Al+Al_{9}^+$, ΔE_{R-T} 分别为 0.190 与 0.191 eV/atom;而 Al_{11}^+ 团簇除分裂成带电或电中性 Al 外,其他路径都存 在分解能垒,前者也是需能最少的分解路经, ΔH_{R-P} 分别为 0.188 与 0.190 eV/atom,而其中需能最多的分 解路经为 $Al_{5}^+ + Al_{6}$ 与 $Al_{5} + Al_{6}^+$, ΔE_{R-T} 分别为 0.432 与 0.429 eV/atom。

对于 Al_{12} ⁺与 Al_{13} ⁺团簇,图 5(d)也显示了与上述 Al_{11} ⁺团簇类似的形成特点,如分裂成结构相似的 Al_{10} ⁺、 Al_{11} ⁺和 Al_{12} ⁺团簇时都没有出现能垒。分裂成两 个较大的团簇时需能较多,分裂出带电或电中性单 Al 原子时需能最少,如 Al_{12} ⁺团簇,需能最多的分解路经 为 Al_5 + Al_7 ⁺, ΔE_{R-T} 为 0.564 eV/atom,需能最少的分解 路经为 Al^+ + Al_1 ⁺ 与 Al+ Al_{11} ⁺, ΔH_{R-P} 分别为 0.246 与 0.241 eV/atom; Al_{13} ⁺团簇需能最多的分解路经为 Al_9 + Al_4 ⁺, ΔE_{R-T} 为 0.581 eV/atom,需能最少的分解路 经 Al^+ + Al_{11} 与 Al+ Al_{11} ⁺的 ΔH_{R-P} 分别为 0.208 与 0.214 eV/atom。

由此可见,非晶性团簇的分解,也趋向于分解成 带电或电中性 Al 原子,裂解成两个较大的团簇则相对 较难,但带电与电中性的 Al 原子裂出的优先性则不 明显。

3 结论

1) 对于 $Al_n^+(n=2\sim13)$ 团簇,双相分裂模式下的 分裂吸收热 ΔH_{R-P} 与分解激活能 ΔE_{R-T} 表明其主要以分 裂成电中性或带电 Al 原子的裂解模式进行。

2) Al_n⁺(n=2~13)团簇分裂成两个原子数相差不大的大团簇时所需能量最多,与其团簇合成相反,这种分裂模式不容易发生。

REFERENCES

- SAUNDERS W A, FAYET P, WOSTE L. Photodestruction of positively and negatively charged aluminum-cluster ions[J]. Phy Rev A, 1989, 39(9): 4400–4405.
- [2] SCHRIVER K E, PERSSON J L, HONEA E C, WHETTEN R L. Electronic shell of group-III A metal atomic cluster[J]. Phys Rev Lett, 1990, 64(21): 2539–2543.
- [3] RAY U, JARROLD M F, BOWER J E, KRAUS J E. Photodissociation kinetics of aluminum cluster ions: determination of cluster dissociation energies[J]. J Chem Phys, 1989, 91(5): 2912–2921.
- [4] RAO B K, JENA P. Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis[J]. J Chem Phys, 1999, 111(5): 1890–1904.
- [5] HEER W A, MILANI P, CHATELAIN A. Nonjelliu-to-jellium transition in Aluminum cluster polarizabilities[J]. Phys Rev Lett, 1989, 63(26): 2834–2836.
- [6] COX D M, TREVOR R L, WHETTEN R L. Aluminum clusters: Magnetic properties[J]. J Chem Phys, 1986, 84(8): 4651–4656.
- [7] JARROLD M D, BOWER J E, KRAUS J S. Collision induced

dissociation of metal cluster ions: Bare aluminum clusters $Al_n^+(n=3-26)$ [J]. J Chem Phys, 1987, 86(7): 3876–3885.

- [8] HANLEY L, RUATTA S A, ANDERSON S L. Collisioninduced dissociation of aluminum cluster ions: Fragmentation patterns, bond energies, and structures for Al₂⁺-Al₇⁺[J]. J Chem Phys, 1987, 86(1): 260–268.
- [9] INGÓLFSSON O, TAKEO H. Energy-resolved collisioninduced dissociation of Al_n⁺ cluster (n=2-11) in the center of mass energy range from few hundred meV to 10 eV[J]. J Chem Phys, 1999, 110(9): 4382–4393.
- [10] LLOYD L D, JOHNSTON R L. Modelling aluminium clusters with an empirical many- body potential[J]. Chem Phys, 1998, 236(1/3): 107–121.
- [11] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18/28): 3865–3868.
- [12] DELLEY B. Analytic energy derivatives in the numerical localdensity-functional approach[J]. J Chem. Phys, 1991, 94(11): 7245–7250.
- [13] PACK J D, MONKHORST H J. Special points for Brillouinzone integrations—A reply[J]. Phys Rev B, 1977, 16(4/15): 1748–1749.
- [14] HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem Phys Lett, 1977, 49(2): 225–232.
- [15] 彭 平,李贵发,郑采星,韩绍昌,刘让苏. Al_n(n=3, 4, 6, 13, 19)团簇的结构稳定性与形态演化[J].中国科学 E, 2006, 36(9): 975-982.

PENG Ping, LI Gui-fa, ZHENG Cai-xing, HAN Shao-chang, LIU Rang-su. The structure stability and configuration evolution of $Al_n(n=3, 4, 6, 13, 19)$ clusters[J]. Science in China Series E, 2006, 36(9): 975–982.

(编辑 李艳红)