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Dynamic constitutive relationship of TC16 titanium alloy
based on Johnson-Cook model

YANG Yang, ZENG Yi, WANG Bing-feng
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Abstract: The true stress—true strain curves of Ti-3%Al-5%Mo-4.5%V alloy with a wide range of strain rates were
investigated under uniaxial quasi-static tension and uniaxial dynamic compression respectively with Instron 8032 test
machine and the split Hopkinson bar. A new method incorporating the stress—strain curve of Ti-3%Al-5%Mo-4.5%V
alloy was proposed for determining the parameters based on Johnson-Cook model easily and avoiding the estimation of
adiabatic temperature rising. The Johnson-Cook dynamic constitutive relationship for Ti-3%Al1-5%Mo-4.5%V alloy was
obtained. The results show that the true stress increases with increasing strain rate, while decreases with increasing
temperature. Under the condition of high strain rate of 10*/s and temperature above 673 K, the true stress is even less than
that under quasi-static condition. Good agreement is obtained between the model prediction and the experimental
stress—strain curves for Ti-3%AI-5%Mo-4.5%V alloy under both quasi-static and dynamic loadings.
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Fig.1 Microstructure of TC16 Ti alloy
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Fig.2 True stress—true strain curves for TC16 under different

conditions
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Table 1

prediction for 6,5 under different conditions

Comparison between experimental data and

Strain Temperature/ Calculated Experimental Relative
rate/s " K data/MPa data/MPa  error/%
4623 293 1271.00 1270.00 —-0.07
8 860 293 1455.10 1455.27 0.01
11 066 473 1293.49 1220.00 —6.02
12 500 573 1198.34 1171.93 —2.25
15550 773 975.54 914.00 —6.73
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