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Fig. 2 Schematic diagram of crystal and electronic structure of graphene: (a,) Crystal structure!*”; (a,) XRD pattern'*’;
(a,) Dirac cones!*” of pristine graphene; (a,) DOSP*! of pristine graphene; (b,), (b,) Crystal structures of Stone-Wales and di-
vacancy graphene!®; (b,), (b,) Band structures of Stone-Wales and di-vacancy graphene!*”’; (b,) crystal structure®’ of mono-
vacancy graphene; (bs) DOSPY of mono-vacancy graphene; (c,) Schematic diagram of doped graphene; (c,—c5) DOS of B-
doped, N-doped, O-doped, and S-doped graphenes™; (d, - d,) Schematic diagram of graphitic, pyridinic and pyrrolic
graphenel®; (d,—d¢) DOS of graphitic, pyridinic and pyrrolic graphene®!
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Fig. 3 Crystal structures(a) and diffusion energy barrier(b) of Li in direction perpendicular to graphene sheet of pristine

graphene, mono-vacancy graphene and double-vacancy graphene for lithium storage®®!), crystal structure(c), SEM image(d),
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Defects in graphene and their effects on electronic structure and
lithium storage performance

YAO Li-hua'?, ZHAO Jian-guo?, PAN Qi-liang?, JIANG Shang?, LI Chun-cheng?, LI Jing-wei’

(1. School of Mechatronical Engineering, Shanxi Datong University, Datong 037003, China;
2. Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China)

Abstract: Lithium-ion batteries have attracted much attention because of their excellent electrochemical and
mechanical properties. Although these batteries have been widely used and commercialized, researchers are still
conducting extensive research on their electrode materials and technologies to improve safety, lifetime, specific
capacity, energy density and lower cost. Graphene has been widely used as anode material for lithium-ion batteries
due to its open layer structure, special electronic structure and excellent electrical conductivity. Based on the
microstructure of graphene, this paper introduced the effects of defects on the electronic structure and lithium
storage performance of graphene as well as the latest progress of related research, clarified the relationship of
microstructure, electronic structure and electrochemical performance of graphene as anode material of lithium-ion
batteries. In addition, the current problems and future research directions of graphene anode materials were
summarized, which could provide guidance for the development and application of lithium-ion batteries.
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