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Table 1 Thermophysical parameters of materials for transient thermal analysis

Material Density/(kg-m™) Thermal conductivity/(W-m™-°‘C™) Specific heat capacity/(kJ-kg™-‘C ™)
GW63K alloy Fig. 3(a) Fig. 3(b) Fig. 3(c)
Graphite 2250 121 0.72
Quartz 2650 Fig. 3(d) Fig. 3(e)
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Fig. 9 SEM images of GW63K alloy solidified at different cooling rates ((a)—(f) represent sample 1-6, respectively)
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Fig. 11 SEM image(a) of characterized region and element map scanning distribution of Mg (b), Gd (c) and Y (d) in as-cast
GW63K alloy
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Table 2 EDS spot analysis of GW63K alloy solidified at

different cooling rates

R/ EDS Mass Mole
L Element . .
(C-s™"  spot fraction/%  fraction/%

Mg 93.14 98.44

Gd 3.31 0.54

’ Y 1.91 0.55

Zr 1.64 0.46

Mg 78.25 94.83
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Zr 0.46 0.19
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Zr 0.46 0.19
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Preparation of Mg-Gd-Y-Zr alloy solidified at
controlled cooling rate and
microstructure characterization by X-ray tomography

ZHAO Xue-ting"*? ZHANG Tian-xiang">“, LI Shao-xiang" %, LIU Jia-hao"?,
YUAN Yong®, LI Zhong-quan’, HAN Zhi-giang-?
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Abstract: An experimental method of preparing Mg-Gd-Y-Zr alloy solidified at controlled cooling rate, acquiring
temperature-time data during the solidification process, and calculating the temperature inside the alloy was
established. The experiments were carried out on Mg-6Gd-3Y-0.5Zr (mass fraction, %) (GW63K) alloys, and
several GW63K alloy specimens cooled at different rates in the range of 0.13-0.33 “C/s were prepared. The
solidification microstructure and quantitative information of the GW63K alloys were characterized by using X-ray
tomography technique and SEM. The effects of cooling rate on the microstructure and quantitative information
were discussed. Besides, the quantitative relationships between cooling rate and volume fractions of the eutectics
and secondary phase were proposed, respectively. The results show that the eutectics of GW63K alloy which
distribute at the grain boundaries present network-like morphology, and the secondary phase with irregular
morphology distributes in the eutectics. With the increase of cooling rate in the range of 0.13-0.33 C/s, the
primary phase with six-fold symmetry is refined. The eutectic networks become denser, more homogeneous and
continuous. The secondary phase distributed more dispersively, and the average size of secondary phase become
lower. In addition, the volume fractions of eutectics and secondary phase reduce with increasing the cooling rate.

Key words: Mg-Gd-Y-Zr; controlled cooling rate; X-ray tomography technique
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