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Process on measurement data from copper pyrometallurgical heat
dynamical system by using of EMD method
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Abstract: In order to improve control accuracy of key parameters about heat engineering from copper pyrometallurgical
heat dynamical system, a new method for recognition of specific frequency band was put forward by using of power
spectrum of its intrinsic mode function components based on the instantaneous nonlinear characteristic of key parameters
about heat engineering. By using of empirical mode decomposition, instantaneous key parameters signals about heat
engineering are decomposed into a series of IMFs, each of which covers a specific frequency band, which means
corresponding disturbance factor. Then useful IMFs are selected as features to reconstruct key parameters signals about
heat engineering which present true trend for key parameters signals about heat engineering. The application examples
that the main reason for the fluctuation of the signals of the heavy oil flow is the pulsating of the signals of the heavy oil
transmission pipeline pressure drop, the main reason leading to the oscillation of the signals of the air pressure is the
fluctuation of the pressure drop. And removing the affecting factors of IMFs, reconstructed signals can be expressed as
exact description of fluctuation value. The proposed method is reasonable to process non-linear key parameters signal
about heat engineering from copper pyrometallurgical heat dynamical system.
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Fig.1 Heavy oil flux signal and its IMF1~IMF7 components
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Fig.2 Spectrum of IMF1~IMF7 of heavy oil flux signal: (a)
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Fig.3 True signal of heavy oil flux based on reconstruction
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Fig.6 True signal of air pressure based on reconstruction IMF
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