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Influence of imperfection number on acoustic emissions and elastic
strain energy decrease of rock specimens with initially random
imperfections

WANG Xue-bin

(School of Mechanics and Engineering Sciences, Liaoning Technical University, Fuxin 123000, China)

Abstract: The acoustic emissions and elastic strain energy decrease of rock specimens with initially random material
imperfections in uniaxial plane strain compression were numerically modeled by using FLAC. Beyond the failure of the
imperfection that is weaker than the intact rock element, it undergoes ideal plastic behavior, while the intact rock element
exhibits the linear strain-softening behavior and then the ideal plastic behavior once failure occurs. As the imperfection
number increases, the peak of elastic strain energy decrease rate (elastic strain energy decrease per 10 timesteps)
decreases. The steeper the post-peak stress-axial strain curve is, the higher the peak of elastic strain energy decrease rate
is. The peak of elastic strain energy decrease rate occurs in strain-softening stage. As the imperfection number increases,
the total elastic strain energy decrease has a decreasing tendency. The failure of intact rock elements leads to a rapid
increase in the total elastic strain energy decrease. As the exerted axial strain increases, its increasing tendency becomes
slow. The numerical rock specimen with initially random material imperfections can better model the actual failure
process of rock material, while the homogeneous specimen cannot.
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Fig.2 Distributions of initially random imperfections within rock specimens: (a) Scheme 2; (b) Scheme 3; (¢) Scheme 4; (d) Scheme

5; (e) Scheme 6; (f) Scheme 7
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Fig.3 Elastic strain energy dissipation rate and elastic strain

energy decrease rate of elastic-brittle material
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Fig.4 Modeled results in scheme 1
(homogeneous specimen): (a) 6 000
timesteps; (b) 8 000 timesteps; (c) 10 000
timesteps; (d) 12 000 timesteps; (e)
Stress—strain curve and elastic strain

energy decrease rate—strain curve
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Fig.5 Modeled results in schemes 2 and 3
(random material imperfections are generated for
300 times): (a) 6 000 timesteps in scheme 2; (b)
8 000 timesteps in scheme 2; (¢) 10 000 timesteps
in scheme 2; (d) 12 000 timesteps in scheme 2;
(e) Stress—strain curves and elastic strain energy

decrease rate—strain curves in schemes 2 and 3
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Table 1 Numerical results of elastic strain energy decrease and acoustic emissions

Peak elastic strain energy decrease

Total elastic strain energy Peak acoustic emission

Accumulated acoustic

Scheme rate/10 " J decrease/10 ° J count emission count
1 24.56 17.86 123 3191
2 7.429 7.626 16 1945
3 6.765 6.010 19 1984
4 3.893 6.480 35 2100
5 5.015 6.847 26 2172
6 6.555 6.666 26 2227
7 4.122 6.289 39 2161
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