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Plane shear (Mode ) fracture experiment analysis of
brittle rock at high temperature

XIE Hai-feng, RAO Qiu-hua, XIE Qiang, LI Zong-yu, WANG Zhi

(School of Civil Engineering and Architecture, Central South University, Changsha 410083, China)

Abstract: Compression-shear box and scanning electron microscope(SEM) tests were used to study the shear fracture

characteristics and mechanism of brittle rock at high temperature. The physical and mechanical properties of brittle rock at

high temperature were investigated by density test and uniaxial compressive test. The test results show that, under

compression-shear loading and at increasing temperature, both the dry-baking of clay material and the micro-cracks

initiation and development have effects on elastic modulus, axial compressive strength and fracture peak load. The former

is dominant before a certain critical temperature such as 250  and can increase the mechanical properties of rock, while

the latter is dominant after the critical temperature and can decrease the mechanical properties of rock. The new crack is

initiated and propagated almost along its original plane of specimen at high temperature. The radius of crack nucleation

zone is increased with the increase of temperature and the fracture morphologies are of trans-granular fracture. The crystal

surfaces have many dense parallel patterns and rock fragments, which represents the shear fracture (Mode ).
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(AFPB)"! Table 2  Sizes of rock specimens
(CTS)!M (PTS)M! ) . Dimensions, L>< >
Experiment type Specimen No
(CCBD)[U] H/(mm><mm><mm)
Compression DAI-DA7 505050
[13-14] shear box
, Uniaxial E1-E7 50><50><100
compressive strength
Density DE1-DES 50><50>=<50
Notch length 2><a/mm Temperature/
Kuc [15] 2x17.5 20, 60, 100, 150, 200, 250, 300
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Table 1 Mechanical properties of red sandstone at room
temperature
Elastic . Uma).ual . Internal
Poisson, tensile Cohesion, ..
modulus, u strength C/MPa friction
E/GPa o/MPa angle, ¢/(°)
10.67 0.27 2.2 35.1
12
0.8 mm
=1 mm
2
0.25° 0.05 mm !
Fig.l Compression-shear box test: (a) specimen; (b) Experi-
13 mental set-up
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o=70°
P 2.1
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0.05 mm/s 4
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0.02 mm
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0.001 g 1.3%
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JFC-1600
JEOL
JSM-6360LV
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Fig.2 Shear fracture trajectories of sandstone specimens at different temperatures: (a)20 ; (b)60  ; (c) 100 ;(d) 150 ; (e)

200 ;(H)250 ;(h)300
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Fig.7 Shear fracture morphologies of compression-shear specimen at different temperatures: (a) 20 ; (b) 100 ; (¢) 250 ; (d)

300 (C: Crack initiation orientation; P1: Pits; P2: Pores; R: Rock cuttings; S: Secondary crack; T: Tip)



18 8 ) 1539

3
Table 3 SEM analysis

Fracture initial origin and position Fracture
Temperature/ . : Morphology .
of crack nucleation birth mechanism
Little pits and chevron-type Transgranular fracture is dominant. The fractured crystal surfaces
20 secondary cracks at the distance of are smooth and lustrous with many dense parallel striped-patterns Shear
1-3 mm from the original crack and rock-filings. The two phases are connected tightly and have the fracture
tip clear boundary.
Little pits and chevron-type Transgranular fracture is dominant. The fractured crystal surfaces
100 secondary cracks at the distance of are smooth and lustrous with some dense parallel striped-patterns Shear
1-3.5 mm from the original crack and little rock-filings. The two phases are connected much tightly ~ fracture
tip and have the clear boundary
Transgranular fracture is dominant and the intergranular fracture
Little pits at a distance of 0.8—4.0 is increasing. The crystal surfaces of transgranular fracture have
750 mm and stepped secondary cracks parallel striped-patterns and the secondary cracks have parallel Shear
at the distance of 5 umm from the stagger-patterns. The whole surface is uneven with rock-filings fracture
original crack tip and wafer but the local surface is smooth. There exist unclear
boundary and small pores between the two phases.
Little pits at the distance of Transgranular fracture is dominant and intergranular fracture is
0.8—4.5 mm and stepped increasing. The crystal surfaces of transgranular fracture have
300 secondary cracks at the distance of parallel striped-patterns The whole surface is smooth but uneven, erea}::iiie
10 umm from the original crack  with some crystal spots and black corrosive holes. There exist
tip unclear boundary and small pores between the two phases.
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