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Law of heat transfer and simulation of temperature field for
aluminum ingot solidification

DU Feng-shan, ZHANG Pei, XU Zhi-qiang, ZHAO Ling-ling

(College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

Abstract: The rules of heat exchange on the interface of casting and model were set up, and the solidification
temperature fields were simulated. In the solidification process, the temperature history data of ingot and mold were
recorded with a data acquirement system. Based on the experimental data, nonlinear estimation method and finite
difference method of one dimensional heat transfer were adopted to form the model of interface heat transfer. With this
model, the temperature field of the casting system was simulated. The results indicate that the heat flow in the interface of
ingot and mold can be described by exponential function. The heat transfer coefficient related with boundary temperature
is better reflecting the true state. The results of the simulation agree well with the measured values, which indicates that
the models of the coefficient of interface heat transfer are reliability.
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