文章编号: 1004-0609(2007)10-1597-07

熔硅浸渗工艺快速制备 C/SiC 复合材料的非等温氧化行为

闫志巧,熊 翔,肖 鹏,姜四洲,黄伯云

(中南大学 粉末冶金国家重点实验室, 长沙 410083)

摘 要:以针刺整体毡为预制体,采用化学气相沉积(CVD)增密制备 C/C 多孔体,用熔硅浸渗(MSI)工艺快速制备 C/SiC 复合材料,通过非等温热重分析研究材料低温下的氧化反应动力学和反应机理。结果表明: C/SiC 材料的 非等温氧化过程呈现自催化特征,氧化机理为随机成核,氧化动力学参数为:lg(*A*/min⁻¹)=8.752,*E*_a=169.167 kJ/mol。 MSI 工艺中,纤维因硅化损伤产生的活性碳原子易先发生氧化,使 C/SiC 材料起始氧化温度仅为 524℃,比 C/C 材料约低 100℃,且氧化产生大量的裂纹和界面,使材料在氧化初期即具有大的氧化反应速率,C/C 材料则出现 氧化反应速率滞后现象。

关键词: C/SiC 复合材料; C/C 复合材料; 熔硅浸渗; 氧化动力学; 机理 中图分类号: TB 332 文献标识码: A

Non-isothermal oxidation behavior of C/SiC composites rapidly prepared by molten silicon infiltration technique

YAN Zhi-qiao, XIONG Xiang, XIAO Peng, JIANG Si-zhou, HUANG Bai-yun

(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)

Abstract: C/SiC composites were rapidly prepared by the integrity felt which was densified by chemical vapor deposition (CVD) and subsequent molten silicon infiltration (MSI) technique. Non-isothermal TG analysis was used to study the oxidation kinetics and mechanism of the composites at lower temperatures. The results show that the non-isothermal oxidation process of C/SiC composites exhibits self-catalytic characteristics. The oxidation mechanism is random nucleation, and the kinetic parameters are $\lg A=9.703 \text{ min}^{-1}$ and $E_a=182.009 \text{ kJ/mol}$. Active carbon atoms are produced by siliconization of fibers during MSI process and they encounter oxidation first. The initial oxidation temperature of C/SiC composites is 524 °C and about 100 °C lower than that of C/C composites. In addition, cracks and interfaces are produced by oxidation, which causes large oxidation rate at the initial oxidation stage, while oxidation rate is relatively postponed for C/C composites.

Key words: C/SiC composites; C/C composites; molten silicon infiltration; oxidation kinetics; mechanism

C/SiC 复合材料具有低密度、抗热震、耐磨损, 以及优异的高温力学性能和稳定的摩擦因数等优点, 已被广泛应用于航空航天等领域^[1-3]。然而, C/SiC 复 合材料中的炭纤维在 400 ℃以上的空气中即出现明显 的质量损失和强度降低现象,导致材料性能下降甚至 完全失效,而 C/SiC 复合材料作为结构工程构件应用 时大多处于氧化气氛中。因此,研究 C/SiC 复合材料 的氧化行为具有重要意义。

C/SiC 复合材料的制备工艺主要有 3 种: 化学气 相渗透(CVI)、聚合物浸渍裂解(PIP)和熔硅浸渗(MSI)。 CVI 工艺对纤维的损伤小,所制备材料力学性能高和 组织均匀,但存在增密速度慢、原材料利用率低、生

收稿日期: 2007-02-06; 修订日期: 2007-06-25

基金项目: 国家重点基础研究发展规划资助项目(2006CB600908); "863 计划-新材料技术领域"资助项目(2006AA03Z560)

通讯作者: 熊 翔, 教授, 博士; 电话: 0731-8836079; E-mail: Xiong228@sina.com

产周期长(300~1 000 h 或更长)和制造成本高等缺点, 且材料中通常存在 10%~15%的残留孔隙,影响其高 温力学性能和抗氧化性能; PIP 工艺同样存在制备周 期长和残留孔隙率高(15%~20%)等缺点,且 PIP SiC 通常富碳,不利于材料的抗氧化性能。与 CVI、PIP 工艺相比, MSI 工艺具有制备周期短、成本低、残余 孔隙率低(2%~5%)等优点,是一种非常具有竞争力的 工艺化制备技术。目前,已有大量 PIP 和 CVI 工艺制 备 C/SiC 材料氧化性能的报道^[4-5],但尚无 MSI 工艺 制备该材料氧化性能的详细报道。

本文作者以针刺整体毡为预制体,经 CVD 增密 制成 C/C 多孔体后,再 MSI 快速制备 C/SiC 复合材料, 通过非等温热重-微商热重(TG-DTG)手段探讨该类 C/SiC 材料氧化反应的动力学和机理,并与 C/C 材料 的氧化性能进行对比,揭示 2 类材料氧化性能差异的 原因。

1 实验

1.1 材料的制备

以针刺整体炭毡(密度为 0.6 g/cm³)为预制体,采 用等温 CVD 增密工艺制备 C/C 多孔体,经 2 300 ℃高 温热处理(HTT)后,于 1 650 ℃、2 h 熔硅浸渗制备 C/SiC 复合材料。表面经机加工后,切割成 20 mm× 20 mm×5 mm 的小试样。同时采用 CVD+多次浸渍/ 炭化(IC)-HTT 工艺制备 C/C 复合材料,进行对比实验。

CVD 工艺以 C₃H₆ 为热解炭气源, N₂ 为稀释气体, 沉积温度为 1 000 ℃; MSI 工艺以纯度为 99.3%的硅 粉(粒度 50 µm)为硅源; IC 工艺以呋喃树脂为浸渍剂, 采用加压浸渍,于 150~200 ℃固化、800~1 000 ℃炭 化。材料的制备工艺过程见图 1。

图1 C/SiC和C/C材料的制备工艺

Fig.1 Manufacturing process of C/SiC and C/C composites

1.2 材料的微观分析与氧化性能测试

采用排水法测试材料的密度和开孔隙率,结果列 于表 1。用 3014 型 XRD 仪分析试样的物相组成;用 JSM-6360LV 型 SEM 和能谱仪对材料进行微观形貌 和成分分析。

采用美国 TA 仪器公司生产的 SDT-Q600 型同步

热分析仪研究材料的非等温氧化动力学和反应机理。 操作条件为: 空气流量 100 mL/min,升温速率 10 ℃/min,采用热天平记录材料质量随温度的变化(热 天平灵敏度为±0.1 μg)。

表1 C/SiC和C/C材料的密度和开孔隙率

 Table 1
 Density and open porosity of C/SiC and C/C composites

Composites	Density/(g·cm ⁻³)	Open porosity/%
C/C	1.85	2.56
C/SiC	2.36	2.80

2 结果与分析

2.1 材料的微观分析

图 2 所示为 C/SiC 材料的 XRD 谱。可以看出, 材料的物相组成为类石墨结构的 C(基体炭和炭纤维)、 反应生成的 β-SiC 和残留 Si。图 3 所示为材料的 SEM 像。可以看出, C/SiC 材料致密度高,纤维束之间的 大孔隙被白色和灰色物质充分填充(图 3(a)),表 1 显示 C/SiC 材料的开孔隙率仅为 2.80%,表明 MSI 工艺可 快速制备致密的 C/SiC 复合材料。综合 EDS 和 XRD 分析结果可以确定,图 3(b)中白色物质(*A* 区)和灰色物 质(*B* 区)分别为 Si 和 SiC。

2.2 材料的非等温氧化性能

图 4 所示为 C/C 和 C/SiC 材料的 TG 曲线。可以 看出, C/C 材料从 617 ℃开始氧化, C/SiC 材料从 524 ℃开始氧化, C/C 材料的起始氧化温度比 C/SiC 材料约高 100 ℃; C/C 材料在 800 ℃以下质量损失缓 慢, 900 ℃以上质量损失迅速, 1 057 ℃时完全氧化,

图 2 C/SiC 材料的 XRD 谱

图 3 C/SiC 材料的 SEM 像

Fig.3 SEM images of C/SiC composites

图4 2种材料的热重曲线

Fig.4 TG curves of two composites

而 C/SiC 材料在 600 ℃时即质量损失迅速,736 ℃时 质量损失达到最大,还有约 58%剩余。之后,随温度 升高和反应的进行,由于 Si 和 SiC 氧化为 SiO₂ 引起 质量增加,C/SiC 材料质量略有增加,表现为残留质 量略有增加,即出现氧化反应速率滞后现象。

图 5 所示为 C/C 和 C/SiC 材料的 DTG 曲线。从图 5 可以看出,对于 C/C 材料,在 700 ℃以上,氧化反应速率(da/dT)显著增大,当氧化质量损失为 82%时,da/dT 达到最大;对于 C/SiC 材料,温度高于 530 ℃时,da/dT 显著增大,当氧化质量损失为 27%时,da/dT 达到最大,亦即 C/SiC 材料在氧化起始即发生迅速氧化,而 C/C 材料则在氧化开始后一段时间才发生显著氧化。下面讨论 2 类材料氧化性能的差异的原因。

Fig.5 DTG curves of two composites

低温(<1000 ℃)下, Si 和 SiC 氧化速度缓慢,可 以认为不发生氧化反应^[6],因此,材料的低温氧化质 量损失主要由 C 氧化引起。在制备过程中,2 类材料 均进行了 2 300 ℃高温热处理(HTT),相当于石墨化 过程,且石墨化效果主要取决于热处理温度^[7],因此, 可以忽略 C/C 材料后续制备过程中的多次 HTT 对氧 化性能的影响,着重考虑 MSI 工艺能的影响。

对于 C/SiC 复合材料,其所用预制体在沉积热解 炭(PyC)界面层后,继续沉积 PyC 基体制备 C/C 多孔 体(密度为 1.3 g/cm³)。假设所沉积的 PyC 完全均匀覆 盖在炭纤维表面,根据式(1)可计算其厚度为1.65 μm。 在 MSI 过程中, 液 Si 与固体 C 之间开始反应生成 SiC 后,由 Si 原子通过 SiC 层的扩散控制 SiC 厚度的生 长^[8]。Fitzer^[9]和 Gadow 测得 Si 和 C 的扩散活化能 Q 和扩散系数 D_0 分别为 132 kJ/mol 和 2.0×10⁻⁶ cm²/s。 根据式(2)可计算出 MSI 温度为 1 650 ℃时的扩散系数 为 D_{effc}=5.192×10⁻¹⁰ cm²/s, 将其带入式(3)就可得到反 应时间 t 与厚度 dsic 之间的具体关系式, 计算得到 1.5 min 内可转变生成的 SiC 厚度为 2.16 µm, 考虑到 C 转变 SiC 线膨胀 32%,所消耗 PyC 的厚度为 1.64 µm, 表明理想状态下 PvC 可完全转变为 SiC。实际中, CVD PyC 分布不均匀,位于纤维束边缘区域厚度较大,但 MSI 处理时间为 2 h,有足够的时间使纤维束边缘的 PyC 转变为 SiC,且进一步与其包覆的纤维反应,引 起纤维硅化损伤。图 6 所示为 C/SiC 复合材料中的裂 纹和纤维束边缘纤维的硅化现象。裂纹一方面是由较 多的残留 Si 冷却时膨胀引起的; 另一方面是由 SiC 与 炭纤维的热膨胀系数不匹配引起的。大量的裂纹势必 加速材料的氧化。

 $\delta = 3.5 \left(\sqrt{1 + x} - 1 \right) \tag{1}$

图 6 C/SiC 复合材料中的缺陷

Fig.6 Defects in C/SiC composites (a) Microcracks; (b) Siliconizing of fibers; (c) Spectrum of scanning line in Fig.6 (b)

式中 δ 为界面层厚度, μ m; *x* 为沉积界面层后纤维 预制体的质量增量, %。

$$D_{\rm effc} = D_0 \, \exp\!\left(-\frac{Q}{RT}\right) \tag{2}$$

$$d_{\rm SiC} \approx \sqrt{D_{\rm effc}t}$$
 (3)

微观上, C/SiC 复合材料中的 C 为类石墨结构(SP² 杂化)。类石墨炭材料的分子结构为延伸的二维链^[10], 硅化反应将导致这种二维链结构断裂,产生许多新的 不饱和碳原子-活性碳原子,从而引起材料的活性增 加,与 O₂接触时,更易于发生氧化反应。因此, C/SiC 材料的起始氧化温度仅为 524 ℃。而 C/C 材料中碳原 子活性相对较小,起始氧化温度比 C/SiC 材料约高 100 ℃,为 616 ℃。 在氧化过程中,C/SiC 材料除因硅化反应产生的 活性碳原子发生氧化外,完整的二维分子链也因氧化 而断裂,形成部分活性碳原子。随温度升高,氧化反 应进一步进行,材料质量损失增加,同时越来越多的 完整二维分子链因氧化而断裂,形成更多的活性碳原 子^[11],这将导致氧化反应速率增加,亦即随材料质量 损失增加,氧化反应速率增加。这是典型的自催化反 应。当 C/SiC 材料的氧化质量损失达到 27%时,形成 的活性碳原子最多,氧化速率最大。此后,随着氧化 质量损失的增加,可以断裂的二维链结构越来越少, 形成的活性碳原子越来越少,氧化反应速率降低。

Liao 等^[12]的研究结果表明,氧化优先发生在纤维 /基体及基体/基体之间的界面,随后沿着界面间裂纹 进行。在 C/SiC 材料中,由于大量纤维硅化产生的活 性碳原子发生氧化,使得材料中存在大量的裂纹和界 面(图 7(a))。这些裂纹为 O₂进一步迅速扩散至材料内 部提供了通道,使 C/SiC 材料在氧化起始即具有大的 氧化反应速率,在 681 ℃达到最大值;而在 C/C 材料 中,完整二维分子链较难发生氧化,相同氧化条件下, 材料氧化程度微弱。从图 7(b)中可以看出,经 800 ℃、 5 min 氧化后,C/C 材料依然保持完整,没有新增的裂 纹和界面等,氧化仅在材料表面发生。因此经过一段 时间后,C/C 材料氧化反应速率才显著增加,928 ℃ 达到最大值。

图 7 2 种材料 800 ℃、5 min 氧化后的微观形貌 Fig.7 Microstructures of (a) C/SiC composites and (b) C/C composites after oxidation at 800 ℃ for 5 min

2.3 材料的非等温氧化动力学和机理

根据 TG 分析用样少的特点,与恒温氧化所用试 样相比,TG 所用试样通常与 O₂具有更大的接触比表 面积。随氧化温度升高,试样中的炭最终会氧化消耗 殆尽,较高温度下材料的 TG 结果仅表现为 Si 和 SiC 的氧化增重。因此,在本研究中,主要借助 TG-DTG 分析研究低温时材料的氧化行为。

采用微分 Achar-Brindley-Sharp-Wendworth^[13](式 (1))和积分 Satava-Sestak^[14](式(2))、Coats-Redfen^[15](式 (3))来研究 C/SiC 材料在非等温条件下的氧化反应的 动力学和反应机理。

Achar-Brindley-Sharp-Wendworth 方程:

$$\ln\left[\frac{1}{F(\alpha)}\frac{\mathrm{d}\alpha}{\mathrm{d}T}\right] = \ln\left(\frac{A}{\beta}\right) - \frac{E_{\mathrm{a}}}{R}\frac{1}{T}$$
(4)

Satava-Sestak 方程:

$$\lg[G(\alpha)] = \lg\left(\frac{AE_a}{\beta R}\right) - 2.135 - \frac{0.4567E_a}{R}\frac{1}{T}$$
(5)

Coats-Redfen 方程:

$$\ln \frac{G(\alpha)}{T^2} = \ln \left(\frac{AR}{\beta E_a}\right) - \frac{E_a}{R} \frac{1}{T}$$
(6)

式中
$$\alpha$$
 为转化分数; $d\alpha/dT$ 为反应速率; β 为线性

表 2 固体氧化分解反应动力学计算中常用的机理函数

升温速率; *F*(a)和 *G*(a)分别代表不同的微分和积分机 理函数。

表 2 列出了固体氧化分解反应动力学计算中 16 种常用的机理函数^[16-18]。从 TG—DTG 曲线得处 C/SiC 材料在 835~970 K(亦即 562~697 °C)内的 α 和 d α /dT 值,列于表 3。将表 3 中的数据(T, α , d α /dT)以及表 2 中的机理函数分别代入 3 种方程(式(4), (5), (6))。 对式(4)而言,以 ln[($d\alpha$ /dT)/ $F(\alpha$)]对 1/T 作直线;对式 (5)而言,以 lg[$G(\alpha$)]对 1/T 作直线;对式(6)而言,以 ln[$G(\alpha)/T^2$]对 1/T 作直线,可直接获得直线的线性相关 系数和标准偏差,从直线斜率和截距可分别计算活化 能和指前因子。计算结果列于表 4。

对于不同的机理函数,所得到的直线斜率、相关 系数、标准偏差以及活化能和指前因子不同。对某种 机理函数来说,采用微分和积分法所得到的计算结果 如果同时满足下列条件:

1) 采用不同公式计算所得的活化能 E_a 均位于 80~250 kJ/mol 之间,指前因子 lg(A/min^{-1})均位于 7~30 之间,而且不同处理方法所得到的对应数值相差不大;

2) 所得直线的线性相关系数 r <- 0.98;

3) 所得直线的标准方差 S.D.<0.3。

则该机理函数所代表的机理为材料非等温氧化反 应的实际机理,同时可获得氧化反应的活化能和指前

Norma	Type of mechanism		Form of fu	G 1 1	
Name of function			$F(\alpha)$	$G(\alpha)$	- Symbol
		<i>n</i> =1	(1- <i>α</i>)	$-1n(1-\alpha)$	A1
Avrami-Erofeev equation	Random nucleation $n=2$ n=3		$2(1-\alpha)[-1n(1-\alpha)]^{1/2}$	$[-1n(1-\alpha)]^{1/2}$	A2
			$3(1-\alpha)[-1n(1-\alpha)]^{2/3}$	$[n(1-\alpha)]^{2/3}$ $[-1n(1-\alpha)]^{1/3}$	
Parabola law	1-E	D diffusion	$1/(2\alpha)$	A^2	D1
Valensi equation	2-D diffusion,	decelerator α — <i>t</i> curve	$[-1n(1-\alpha)]^{-1}$	$\alpha + (1-\alpha) \ln(1-\alpha)$	D2
Jander equation	3-D diffusion,	decelerator α — <i>t</i> curve	$1.5(1-\alpha)^{2/3}[1-(1-\alpha)^{1/3}]^{-1}$	$[1-(1-\alpha)^{1/3}]^2$	D3
G-B equation	3-D diffusion	, spherical symmetry	$1.5[(1-\alpha)^{-1/3}-1]^{-1}$	$[1-2\alpha/3]-(1-\alpha)^{2/3}$	D4
Z-L-T equation	3-1	D diffusion	$1.5(1-\alpha)^{4/3}[(1-\alpha)^{-1/3}-1]^{-1}$	$[(1-\alpha)^{-1/3}-1]^2$	D5
Phase boundary reaction	Decelarator	Cylindrical symmetry	$(1-\alpha)^{1/2}$	$[1-(1-\alpha)^{1/2}]$	P2
	α — <i>t</i> curve	spherical symmetry	$1 - (1 - \alpha)^{2/3}$	$[1-(1-\alpha)^{1/3}]$	P3
		<i>n</i> =2	$1/2(1-\alpha)^{-1}$	$1 - (1 - \alpha)^2$	R2
Reaction order		<i>n</i> =3	$1/3(1-\alpha)^{-2}$	$1 - (1 - \alpha)^3$	R3
		<i>n</i> =4	$1/4(1-\alpha)^{-3}$	$1 - (1 - \alpha)^4$	R4
Chemical reaction	Decelar	ator α — <i>t</i> curve	$(1-\alpha)^2$	$(1-\alpha)^{-1}$	F2
Mampel power		<i>n</i> =2	$2\alpha^{1/2}$	$lpha^{1/2}$	M2
	<i>n</i> =3		$3\alpha^{2/3}$	$\alpha^{1/3}$	M3

 Table 2
 Mechanism function used in kinetic calculations of solid oxidation decomposition reaction

<i>T</i> /K	α	$\frac{(d \alpha/d T)}{(\% \cdot K^{-1})}$	T/K.	α	$(d \alpha/d T)/(\% \cdot K^{-1})$	T/K	α	$(d \alpha/d T)/(\% \cdot K^{-1})$
835.04	0.017	0.037	885.02	0.085	0.137	935.09	0.306	0.413
840.05	0.021	0.043	890.12	0.098	0.155	940.14	0.343	0.446
845.08	0.025	0.050	895.11	0.112	0.174	945.05	0.382	0.475
850.01	0.030	0.057	900.02	0.128	0.195	950.09	0.425	0.500
855.02	0.035	0.065	905.06	0.146	0.218	953.03	0.451	0.507
860.01	0.041	0.074	910.09	0.166	0.244	955.06	0.469	0.506
865.05	0.048	0.084	915.03	0.188	0.272	960.04	0.512	0.490
870.12	0.055	0.095	920.14	0.213	0.305	965.07	0.553	0.458
875.09	0.064	0.108	925.06	0.24	0.341	970.05	0.591	0.414
880.12	0.074	0.122	930.06	0.271	0.378			

表 3 材料 C/SiC 非等温氧化过程的温度、转化率和反应速率数据 **Table 3** Oxidation reaction data of sample C/SiC in non-isothermal oxidation process

表4 不同方法计算得到的动力学参数

Symbol -	Achar-Brindley-Sharp-Wendworth				Satava-sestak					
	$E_{\rm a}/({\rm kJ}\cdot{\rm mol}^{-1})$	$lg(A/min^{-1})$	r	S.D.	$E_{\rm a}/(1$	kJ·mol ⁻¹) lg((A/\min^{-1})	r	S.D.	
A1	156.830	9.411	-0.995	0.105	17	78.181	8.554	-1.000	0.014	
A2	63.143	4.234	-0.975	0.093	8	9.091	3.980	-1.000	0.007	
A3	31.914	2.433	-0.918	0.089	5	9.394	2.531	-1.000	0.005	
D1	31.914	2.433	-0.918	0.089	33	39.864	16.961	-0.999	0.048	
D2	317.680	17.837	-0.995	0.199	345.208		16.998	-0.999	0.041	
D3	326.355	18.068	-0.997	0.176	3:	50.757	16.695	-0.999	0.030	
D4	335.307	17.963	-0.998	0.153	34	47.057	16.462	-0.999	0.039	
D5	329.358	17.599	-0.997	0.168	30	52.073	17.410	-1.000	0.022	
P2	353.156	19.056	-0.999	0.110	17	73.997	7.994	-0.999	0.019	
P3	147.906	8.864	-0.992	0.125	175.379		7.904	-0.999	0.017	
R2	-42.553	-0.899	0.931	0.108	162.154		7.863	-0.998	0.034	
R3	156.830	9.109	-0.995	0.105	1:	54.838	7.587	-0.996	0.042	
R4	103.285	6.608	-0.939	0.245	14	47.973	7.288	-0.994	0.050	
F2	85.436	5.640	-0.882	0.295	1	6.973	0.918	-0.912	0.023	
M2	174.679	10.504	-0.998	0.074	8	4.966	3.735	-0.999	0.012	
M3	49.6322	3.407	-0.933	0.124	5	6.644	2.375	-0.999	0.008	
Second al	Coats-redfen			Course has 1	lfen					
Symbol	$E_{a}/(kJ \cdot mol^{-1})$	$lg(A/min^{-1})$	r	S.D.	Symbol	$E_{\rm a}/({\rm kJ}\cdot{\rm mol}^{-1})$	$lg(A/min^{-1})$) r	S.D.	
A1	172.459	8.292	-1.000	0.034	P2	168.059	7.711	-0.999	0.046	
A2	78.772	3.077	-0.999	0.018	P3	169.512	7.627	-0.999	0.042	
A3	47.543	1.232	-0.999	0.013	R2	155.605	7.516	-0.997	0.079	
D1	342.483	17.278	-0.999	0.113	R3	147.912	7.197	-0.995	0.099	
D2	348.103	17.328	-0.999	0.098	R4	140.692	6.857	-0.992	0.116	
D3	353.939	17.040	-0.999	0.082	F2	2.934	-2.133	-0.354	0.050	
D4	350.047	16.797	-0.999	0.093	M2	74.435	2.786	-0.998	0.030	
D5	365.838	17.783	-1.000	0.052	M3	44.652	1.028	-0.998	0.020	

第17卷第10期

因子数据^[14]。

根据上述判据对表 4 的数据进行分析,可以看出, 符合 3 个条件的机理函数共有 3 个,分别为 A1、P3 和 R3。其中 P3 所代表的机理为相边界反应-球形对 称-减速形 α —t 曲线,与 C/SiC 复合材料的氧化过程 明显不符;C/SiC 材料低温(<1000 ℃)、短时间(<3 h) 氧化时,质量损失率与氧化时间近似成正比,可排除 P3 所代表的三级反应动力学机理。因此,最合适的机 理函数为 $A1(F(\alpha)=(1-\alpha), G(\alpha)=-\ln(1-\alpha)),$ 氧化机理 为随机成核,动力学参数为 $lg(A/min^{-1})=8.752, E_a=$ 169.167 kJ/mol。

3 结论

 C/SiC 材料的非等温氧化过程呈现自催化特征,氧化机理为随机成核,氧化动力学参数为: lg(*A*/min⁻¹)=8.752, *E*_a=169.167 kJ/mol。

2) 纤维硅化损伤产生的活性碳原子易先发生氧化,使 C/SiC 材料起始氧化温度仅为 524 ℃,比 C/C 材料约低 100 ℃。

3) 纤维硅化损伤产生的活性碳原子的氧化使 C/SiC 材料中新增大量的裂纹和界面,氧化起始即具 有大的氧化反应速率;而 C/C 材料由于氧化初期结构 依然相对完整,出现氧化反应速率滞后现象。

REFERENCES

- Fitzer E, Manocha L M. Carbon reinforcements and carbon/carbon composites[M]. New York: Springer-Verlag, 1998: 295–330.
- [2] Ding Y S, Dong S M, Zhou Q, Huang Z R, Jiang D L. Preparation of C/SiC composites by hot pressing, using different C fiber content as reinforcement[J]. J Am Ceram Soc, 2006, 89(4): 1447–1449.
- [3] 肖 鹏, 熊 翔, 张红波, 黄伯云. C/C-SiC 陶瓷制动材料的研究现状与应用[J]. 中国有色金属学报, 2005, 15(5): 667-674. XIAO Peng, XIONG Xiang, ZHANG Hong-bo, HUANG Bai-yun. Progress and application of C/C-SiC ceramic braking materials[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 667-674.
- [4] Xu Y D, Cheng L F, Zhang L T. Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J]. Carbon, 1997, 37(8): 1179–1187.
- [5] 闫联生,李贺军,崔 红,王 涛. "CVI+压力 PIP"混合工艺

制备低成本 C/SiC 复合材料[J]. 无机材料学报, 2006, 21(3): 664-670.

YAN Lian-sheng, LI He-jun, CUI Hong, WANG Tao. Low-cost C/SiC composites prepared by CVI+Pressure-PIP hybrid process[J]. Journal of Inorganic Materials, 2006, 21(3): 664–670.

- [6] Deng J Y, Liu W C, Du H F, Cheng H M, Li Y Y. Oxidation behavior of C/C-SiC gradient matrix composites[J]. J Mater Sci Technol, 2001, 17(5): 543–546.
- [7] 左劲旅,张红波,黄启忠,肖 鹏,徐惠娟. C/C 复合材料的体积密度和石墨化度对硬度的影响[J].中南工业大学学报,2003,34(3):225-227.
 ZUO Jin-lü, ZHANG Hong-bo, HUANG Qi-zhong, XIAO Peng,XU Hui-juan. Influence of bulk density and graphitization degree on hardness of C/C composites[J]. Journal of Central South University of Technology, 2003, 34(3): 225-227.
- [8] Li J G, Hans H. Reactive wetting in the liquid-silicon/solid-carbon system [J]. J Am Ceram Soc, 1996, 79(4): 873–800.
- [9] Fitzer E, Gadow R. Fiber-reinforced silicon carbide[J]. Am Ceram Soc Bull, 1986, 65(2): 326–335.
- [10] 日本炭素材料学会编,新炭素材料入门[M]. 中国金属学会炭素材料专业委员会编译, 1999: 1-5.
 The carbon society of Japan, elementary course to new carbon materials[M]. Specialized Commission of Carbon Materials Under the Chinese Metal Society trans & edit, 1999: 1-5.
- [11] Zhao L R, Jian B Z. The oxidation behavior of low-temperature heat-treated carbon fibers[J]. J Mater Sci, 1997, 32(11): 2811–2819.
- [12] Liao J Q, Huang B Y, Shi G, Cheng T F, Xiong X. Influence of porosity and total surface area on the oxidation resistance of C/C composites[J]. Carbon, 2002, 40(13): 2483–2488.
- [13] Sharp J H, Wendworth S A. Kinetic analysis of thermogravimetric data[J]. Ana1 Chem, 1969, 41(14): 2060–2062.
- [14] Satava V, Setak J. Computer calculation of the mechanism and associated kinetic data using a nonisothermal integral method[J]. J Therm Anal, 1975, 8(3): 477–489.
- [15] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201(4): 68–69.
- [17] Mahfouz R M, Monshi M A S, Abd El-Salam N M. Kinetics of the thermal decomposition of γ-irradiated gadolinium acetate[J]. Thermochimica Acta, 2002, 383(1): 95–101.
- [18] 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001: 127-131.

HU Rong-zu, SHI Qi-zhen. Thermal analysis kinetics[M]. Beijing: Science Press, 2001: 127–131.

(编辑 陈爱华)