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Table 1 Mineral dissolution and aqueous complexation formulations in reaction network

[32-33]

Component Chemical reaction Constant rate, 1g K,
, Uraninite uo, UO,+4H—U*+2H,0 -4.8372
Solid phase . N 2
Schoepite UO0,-2H,0 UO0,-2H,0+2H"—U03"+3H,0 4.8333
U*+4H,0—U(OH),+4H" -4.57
Uy U*+2S0; —>U(S0,), 10.3507
) U*+4HCO;—U(CO,); +4H" -6.2534
U*+5HCO;—U(CO, ) +5H" -17.7169
2U03*+2H,0—>(U0, ), (OH); *+2H" -5.6346
Liquid phase U - I
3UO03}™+4H,0—(UO, ), (OH); +4H -11.929
. 3U0; " +5H,0—>(U0, ), (OH); +5H" -15.5862
VD U0,**+2S0;—>U0,(S0,);~ 3.9806
UO3*+2HCO;—UO0, (S0, )} +2H" -3.7467
UO3*+3HCO;—UO0, (CO,); +3H" -9.4302
UO; +2H—U*"+H,0+0.50, -33.949
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Fig. 4 Dissolution change of uranium minerals in ore-bearing aquifer with time: (a) Equilibrium modeling; (b) Kinetics
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Fig. 5 Changes of Eh, pH and U(VI) concentration of observation wells: (a) Equilibrium of U(VI) concentration; (b) Eh;

(¢) Kinetics of U(VI) concentration; (d) pH
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Application of reaction kinetics in numerical simulation of
in-situ leaching of uranium

WANG Bing" %, LUO Yue"?, LI Xun?, ZHENG Zhi-hong?, LIU Jin-hui*, CHEN Qian-qian®, WU Hui"?

(1. Key Laboratory of Nuclear Resource and Environment, East China University of Technology,
Nanchang 330013, China;
2. School of Water Resource and Environmental Engineering, East China University of Technology,
Nanchang 330013, China;
3. Jiangxi Institute of Survey and Design, Nanchang 330095, China)

Abstract: Numerical simulation of in-situ leaching of uranium is an important method for studying uranium
leaching migration at site scale. In order to accurately simulate the time and space evolution of leaching uranium, a
group of in-situ leaching uranium mining test units with four injection and one pumping were taken as an example
to discuss the impact of thermodynamic equilibrium and reaction kinetics of water-rock reaction in the numerical
model on the simulation results of in-situ leaching uranium mining. The result show that the test results of uranium
leaching at the production wells are close to the simulation results of the reaction kinetic model, but are quite
different from the simulation results of the thermodynamic equilibrium model. Therefore, the reaction kinetic
model can better reflect the extraction process of leaching uranium than the thermodynamic equilibrium model. At
the same time, comparing the simulation results of thermodynamic equilibrium model and reaction kinetics model,
it can be seen that the former simulation results in a larger leaching area, more leached uranium minerals amount,
and a shorter time for complete leaching of uranium minerals. Furthermore, when predicting the degree of uranium
mining and leaching uranium concentration in ore-bearing aquifer, the prediction result of thermodynamic
equilibrium model is too high and the time needed for mining is too short, which lead to overestimate the uranium
leaching rate and underestimate the mining time. Therefore, in the numerical simulation of in-situ leaching
uranium mining, reaction kinetics optimizes the expression of reaction rate of water-rock reaction compared with
thermodynamic equilibrium, which makes the simulation more practical.
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