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AL S NI T2 b, I AL e e S AL A —
RGP IR TS, RN R R AR A B A i
JRANFER I, M “BRALII S H K e s A
BOYIE” WM, 18 BRI BOR B 583 1Y)
RN, FERARROBAR AT e 2

1 HAEFERADZED R

TGRS P R AL R BT IR &, TEIR
ST AU P T SRR b, AR R R A i
FE, A EZONMMEC R . DAL Y. B
BESREMIERBITFZIIR TR, 25K
BB M B ERAT R AL T, R IE SR SR (B ) R 1S
YA BEAT B S R AT #8323 R
By B, 8 i HSC Chemistry 6.0 804 i
“Reaction Equations” #&Ht, HE il MK AG-
TREN, HELH AG-TR AL,

FH B T ) A R AN 2 i 29 O 120 °C R
445 °C, Ik, KrkbelRFEAE 500~1400 CHIERIA,
W AVRS TR EETEAT, =L
LN MeS. SO,: fEILJFEAH T, B FEE YA

®1 GREENMY GBS AGT-TR AR

MeS F1 CO,™. 4 E ) 5 Bk i1 S 8 77 e 2
AGO-TRZAXINE 1, AG-THK R MK I 1(a).
HE 1) H, EBESHET, B CrO, il x M
b, KR & BEAD TR AG<0, KRIMH
Ko FELFESAT, SHiRNEAG<0, RN H
Ko WFPSGFAL, 8RS PR B AG
1, SR TEA R AT EEFEAHT, ik
SRS AG BB B 1T m T FEAR,  mniRR) TimAik x
JS AT o

P T B AE R, MR IR
FEH A MeS. FeSMSO,; b JESH Foith =4 =E
N MeS. FeS A CO,M. 4@ AL 5 kD1
SN TTREAMAGO-TRHZAMNFK2, AG-TRF M
2B WK 1(b). B 1) &1, EBIEAAT,
Cr,O, fEIE KT 1100 CH, RNHAK, HEER
FACITAL R R AG<0, RREE K. HEERESR
T, Cr,O,fEHRE KT 700 CTH, RNHEK, H4i
&R AN RN AG<0, RBE K. PIFHA
SN, BRAGRBI AG BRI THE T RS, iR
R TBACR BT RS T, TR B
AG AL, TERTHiAL R HEAT .

Table 1 Sulfidation reaction and AG®-T relationship of metal oxides with sulphur

Reaction No.

Sulfidation reaction (inert atmosphere)

A,G9-T relationship

1-1 4/3CuO+S,(g)=4/3CuS+2/3S0,(g) A.G9=-193.409+0.030T
1-2 4/3PbO+S,(g)==4/3PbS+2/3S0,(g) A.G9=-166.793+0.033T
1-3 4/3Zn0O+S,(g)=4/3ZnS+2/380,(g) A,G9=-129.809+0.042T
1-4 4/3NiO+8,(g)=4/3NiS+2/350,(g) A,G9=-124.027+0.043T
1-5 4/3Sn0O+S,(g)=4/3SnS+2/3S0,(g) A,G9=-98.412+0.036T
1-6 4/9Cr,0,+S,(g)=4/9Cr,S,+2/3S0,(g) A,G9=16.056+0.033T
1-7 4/98b,0,+S,(2)=4/9Sb,S,+2/3S0,(g) A,G9=-102.684+0.040T
Reaction No. Sulfidation reaction (reducing atmosphere) A,G9-T relationship

1-8 2Cu0+S,(g)+C=2CuS+CO,(g) A,G9=-322.506-0.029T
1-9 2PbO+S,(g)+C—2PbS+CO,(g) A,G9=-282.582-0.025T
1-10 27n0+S,(g)+C=2ZnS+CO,(g) A,G9=-227.106-0.011T
1-11 2NiO+S,(g)+C—2NiS+CO,(g) A,G2=-218.435-0.010T
1-12 2Sn0+S,(g)+C—2SnS+CO,(g) A,G9=-180.012-0.020T
1-13 2/3Cr,0,+S,(g)+C—2/3Cr,S,+CO,(g) A,G9=-8.308-0.024T

1-14 2/3Sb,0,+8,(g)+C=2/38b,S,+CO,(g)

A,G2=-186.419-0.015T
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Fig. 1 A,G®-T curves of sulfidation reaction of metal oxides: (a) Sulphur; (b) Pyrite
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Table 2 Sulfidation reaction and A, G® — T relationship of metal oxides with pyrite

Reaction No. Sulfidation reaction (inert atmosphere) A,G9-T relationship
2-1 2/3CuO+FeS,—2/3CuS+FeS+1/3S0,(g) A,G9=37.424-0.106T
2-2 2/3PbO+FeS,—2/3PbS+FeS+1/3S0,(g) A,G9=50.732-0.105T
2-3 2/3Zn0+FeS,=2/3ZnS+FeS+1/3S0,(g) A,G2=69.224-0.100T
2-4 2/3NiO+FeS,=2/3NiS+FeS+1/350,(g) A.G9=72.114-0.100T
2-5 2/3SnO+FeS,=2/3SnS+FeS+1/3S0,(g) A,G9=84.922-0.103T
2-6 2/9Cr,0,+FeS,—2/9Cr,S,+FeS+1/350,(g) A,G9=142.156-0.105T
2-7 2/98b,0,+FeS,=2/9Sb,S,+FeS+1/350,(g) A,G9=82.786-0.102T

Reaction No. Sulfidation reaction (reducing atmosphere) A,G9-Trelationship
2-8 CuO+FeS,+1/2C=CuS+FeS+1/2CO,(g) A,G2=-27.125-0.136T
2-9 PbO+FeS,+1/2C=PbS+FeS+1/2CO,(g) A.G9=-7.163-0.134T
2-10 ZnO+FeS,+1/2C—=ZnS+FeS+1/2C0O,(g) A,G9=20.575-0.127T
2-11 NiO+FeS,+1/2C=NiS+FeS+1/2CO,(g) A.G9=24.911-0.126T
2-12 SnO+FeS,+1/2C=SnS+FeS+1/2C0O(g) A,G2=44.122-0.131T
2-13 1/3Cr,0,+FeS,+1/2C=1/3Cr,S,+FeS+1/2C0O,(g) A,G9=129.974-0.134T
2-14 1/38b,0,+FeS,+1/2C=1/3Sb,S,+FeS+1/2C0O,(g) A,G9=40.919-0.129T

2 HKERRARBIA SRR

BB AR REROR L & IR BOR O 2 M
P80 R PR A A B, [l R R AR

B FEAREE )R

21 |HH

B A AR 8 B AR AE S A A 2 77 T £ I L A

BAREEEED . LB RSB, DAL AR
BAE S .
2.1.1 AACET T B AL KGR

BRACKE BERORAE BBV Z2E0 MR AR 454
HR BRI N I TR, I X b S 2 R S A B
AL B EAT B S ik B, R AT L S N ATLEEL )
G

FET 3 AL 52 7 9 PbCO;, iRl 72
PbCO, B S/ N PbO, RJa HR ARSI 2
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BRAGTIAS R, A2 PbSO, 1 PbO-PbSO, %5 H [
Yy, BARSON L (1)~(4):

PbCO,=PbO+CO,(g) (1)
5PbO+28,(g)=3PbS+PbO-PbSO, )
4PbO+2S,(g)==3PbS+PbSO, 3)
4PbO+3S,(g)=4PbS+2S0,(g) ()

KGNS F R AR A, SR T
PREF Ao B i TR P2, K ILPbS. PbSO,
PbO-PbSO, 55415t i 36 75 UKL [H T 1 W S (1) 43 |
ghR; 3F HEI AR I0IE R, BTk AT
L3k PbS 78 Mk R M A, AR GREEISLE R i it
PENBRAFIRIBE T, B FH &4 S-PbCO, BE /R
Fe LRI, 5= A i) v IR WS 2R e, Y
[l IL 5 88%

RN H) EEA A ) 9 ZnCO,y, MR S
fif# 9 ZnO TR AETRAL B s Bk AN 2 B
A % 1] P2 ) ZnFe,0,, 380 B kT & A,
ZnFe,0, 2 % 1k 4 ZnS+Fe,0,, #x J&i £ K ZnS+
FeS!",  FAK S B L 2(5)~(8):

ZnCO,=Zn0+CO,(g) (5)
14ZnO+6FeS,—11ZnS+3ZnFe,0,+S0,(g) (6)
16Zn0O+9FeS,—16ZnS+3Fe,0,+2S0,(g) (7
27Zn0+3FeS,=27ZnS+3FeS+S0,(g) ®)

FLARSEPNN i B NBEERAT, T DU Sk
B, HPEC Aheef i, Bk, s
LA O A 25%, BEBRAL R TTIA F
83.59%, —UCHHIE S RICRATIA 3 64.7%. 1 LBk
LU R BB E AL ), RIS BN B S
FREALEENT(ZnO), Bl B & 1380, e 3R
il 55 442 i ZnS A1 ZnS,.

EEXTOR IR A BEA v B SO A A, A
FKSEEPIR R ERE FE R 7%, B 9T iR B A
BRI R IR = ORI B B 1R B A R T A R
TR RS A T BE IR B AE 450 C R KT
60 min. 750 ‘C N {46 30 min 264, HYEEHIBR
b2 53 51135 51 96.50% F1197.29%. CHEN 2523157
“DRARE eI " L2 A BRRRIRAYER I, 53] T
BERAIN32.1%. HYER AN 8.0% M EHR GREA .
2 9 A AR L el N RE A B A R e ad A v SO, A
B, R LEHE— BN . RSP K

T “BALESRE-ET R T2 S A R R e
W R, B BRORIRE, BRALKSRETEIR A Nt
17, TR RN IR SR R AT s AR JE I i 42k [l
WCRR A, R RISk, = 3 [ IR R o i OA B
86.04%- 69.08% 164.87%, KHHERIE H BN +
(1) Ca* F1Fe*", 1337 Si0, 81.05% [11i% Hivk .

F BT IR A 2 14y 9 Zn,S1,0,(0H), H,0,
£ i B 500~800 C i [l 1, & AE 73 il S B AR K
Zn,SiO,(FEEEN ™) 7F Zn,SiO, Ktk e N, Bl
T AR FeS, FI & 3G 0, [ S =4 v & 2k #H R
Fe,0,—Fe,0,—FeO—FeS ¥4k, HARKM MOy
(13):

Zn,Si,0,(OH),-(H,0)=2Zn,Si0,+2H,0(g) )
11Zn,Si0,+12FeS,—

227nS+11Si0,+6Fe,0,+2S0,(g) (10)
8Zn,Si0,+9FeS,=16ZnS+8Si0,+3Fe,0,+2S0,(g)

(11)
57n,Si0,+6FeS,—10ZnS+5Si0,+6Fe0+2S0,(g)

(12)
Zn,Si0,+3FeS,=27ZnS+Si0,+3FeS+S0,(g) (13)

EEXTE IR SRR AU A M R, X
NI RO P S A o R 25% R BEERET,  E 900 C
(F0UR 2 R e 20 min, SRR A AT FIEE R BR AL 2 4y
5l i £ 98.08% Fl1 90.55%. #8557 ] 3 ik A ik
Zn,Si0,, M FL S WA FREBE R IR AL S B s 2 ]
FeS, & A1 U FE AN 1], 728 i) ZnS 1 Si0, 1
[EIF, AR R T R ) Fe, O,

BEERAR A0 1) 2 B = U0 N ZnFe,0,, B
TAL TR FeS, F B B3I, SLP= 4 v & Bk el e
i Fe,0,—Fe,0,~FeO—FeS 5 1k, H & & I I
A(17):
11ZnFe,0,+6FeS,—11ZnS+14Fe,0,+SO,(g)  (14)

8ZnFe,0,+5FeS,—8ZnS+7Fe,0,+2S0,(g) (15)
5ZnFe,0,+4FeS,=5ZnS+14FeO+3S0,(g) (16)
ZnFe,0,+5FeS,—ZnS+7FeS+2S0,(g) (17)

/N2 PE S TG-DTA. XRD. XPS fil SEM
LMTFR, JHERAET, B Ak b
AIBRAL SRL 3 NP B SR (R 70 fif . AR
KEMER. SEMIBEFREATENTE.
ZnFe,0, TE R Fe* LR A ZnO B . B %
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(1) G T A 4 [ 6NiFe,0,+5S,(g)—6NiS+4Fe,0,+4S0,(g) (25)

BeAh, W SR R AR AR RSB ALEEE 2NiFe,0,+5S,(2)=2NiS+4FeS+4S0,(g) (26)
TGRSR A g, DLABRAGRIAERINL - 2NiFe,0,+7S,(g)—2NiS+4FeS,+4S0,(g) (27)

o B B A ER AR T A R AL
R FHAY) AR ARG, KRR W 7L R
W, AR IR LT 750 CI, PbS FSF 2 f Ak
FERIR RN 10 pm, F 7L R BREE AR AL
W, B e R 2 R S BOLH BRI SR RSN
INATER IR ST, U Fe,0, fEBRAL K5 e it 72
A] L B [ AR AR, Fe,O, 7] 5 i fif A= i) FeS, A1
FeS, HA B WA (18)H1(19), 1fi FeS, fl FeS 1] ££
JE AR R MR, TR AR A R . BT
YA VE BRI, SR i th I B B Ak
FURIEFH o 8 7k 24 SO 58 PbO-FesS, 1 B &
W, RIS A F] 700 TR, PbO-S,4x Nt
BHIRNAR R . FARMECFFURIN, FeS, 7 flr=
A4 FeS 1T 78 435 A7), BRI (20), B2
TG BT s I HER RIS ot &
ISRRAS, AR TR SRR R K. Bk,
PRI E AL AT, Rrbe =45 ] TreEl. %
TUMFIRIB A, Bn] LRI SO, FEAK B 2kAT
(1 3 A T P R HE A I B AL S B, Na,CO, AT
LA ARG A2 Ak 40 10 08 A0 IR P R BRE A A420 ot A 1 A K
TR,

2Fe,0,+48,(1)+3C=4FeS,+3C0,(g) (18)
2Fe,0,+2S,(1)+3C=4FeS+3CO0,(g) (19)
2FeS,—2FeS+S,(g) (20)

2.1.2 R IERA R be

CLLARE AL S A R A I R R e AT
DABSCE AL 2o, SR JE R AT . LR R
HILZH A LR R SRR R LL 4R
W H NiO AT B AL AR B NGS, T it 2 A A 70 P 2 ) 484
fn, Fe,O, itk =4 HH Fe,O0,—~FeO—FeS # 1k, 4
BRI i A R B B BAG R B G . & Bk Al
Fe,O, [ £ i Fe,0,—FeO—FeS # 1k, H ik i I
K (@21)~Q27)

ANiO+3S,(g)—4NiS+2S0,(g) 2D
12Fe,0,+S,(g)—8Fe,0,+250,(g) (22)
4Fe,0,+7S,(g)=8FeS+6S0,(g) (23)

4Fe,0,+118S,(g)=—=8FeS,+6S0,(g) (24)

BEPEMERR AL, T BAE NiS A R, 4
Fe,0, 4 ik« PICKLES %5:PUid it %} Fe-Ni-Co-Mg-
Si-O-H-S-C-CU& R BEAT 120 58, M) 5 A
FEFR kB AL B A W AT M . ABIDIN PI7E M
SR ISR, RIEJE A5 F nRdEE FEE
Ak 14T . HARRIS &P 5E 48 i, 78 950~
1050 “CiE & AT it be, AR F LRI
MIHEAT s[RI H NS SRR BN AR
g, FEERREFERCERBIR, N 35%~45%.
2.1.3 BRI R b

BRI E B 5 9 Sb,O,, B A BRAL T
HERIEI, K™% H Sb,0,—Sb,0,—Sb,S, %
b, HAK N L3 (28) F1(29). WANG 25695 i,
fEed B i &, 5 Sb,S, 2 5 Sb,0, R
A2 b0y, B S B WL A(30), AFTI#ik; B
AL B RIIN . R B2 10 T s AR i B
MIEL, R BRI R I 1) Sb,S, B E, B
V308 [ AR B AT A ) 95%.  WANG Z570F 78 R B,
T%%J%%ﬁy%@mmﬁuﬁ‘ﬁﬁﬁﬁ
450 ‘CNESBE30 min J&, BRTFIE RICR 5

4Sb,0,+S,=4Sb,0,+2S0,(g) (28)
2Sb,0,+5S,=28b,S,+4S0,(g) (29)
9Sb,0,+Sb,S;=10Sb,0,+3S0,(g) (30)

2.1.4 BRI BAL R BERR AR

RERTT ) LB S 7 Y FeTiO;,  Horh 2% i
B MELL B SRR RS R, RE R
VERE L WEIEBEAT 2R, &S AT B G A% Y TiO,.
FeTiO, Ml FeCr,O, M i At e WAk R AL E 4%, K H
HSC Chemistry 6.0 # [} “Lpp Diagrams-Stability
diagrams” i, £ Fe-Ti/Cr-S-O VY Ju ik R (155
R, R mE2FrR. mE2, £
PRAUEAE B TIO, I A, 42 5 FeCr,O, IRk, #1H]
&FW$§43%ﬁL H ooy Ry R P,
RHAMDHANI %P i i 56 45 1, ZERR AL RS 1R FR
R, B8 Ep(0,)<6.9x107" Pa, i)k
p(O)<1x107" Palhf, AJ LA RS I BRA™ 1K) 1% %
EROTREAS



1752

T A e E SR

2022 £ 6 H

BTSRRI ERBRRE D, A XL
Bk ﬁﬁﬂ?)ﬁi‘%f ifts IF HARARE bRk
MIEAEAh, IR LB B A H,S. SO, UIAAE i
). AHMAD Z5H0*213 iod B 46 % b2 i 3 4
H,S AE A BRAL TR e FLE SR 1, H 2 A8 B A i
i, R GSIRERT HE AL .

fE— ﬁﬁﬁﬂ%ﬁﬁ
YRS, NRYEREE, oA T EA R ke
SR {5 KRS IR
221 R EERTRAL R

BRI AT WL A R B SRR N R
B, RETAENERM RS, Fln, fxFE
BAT A B2 9 ZnSO, M PbSO, [MARIR i, 7T E
K P8 R s e A FL L A A A, BAA R B AL
B1)~(33). IR KT e il B A4z bl B OB, 48
TGS e TR A, PbSO,IE JR N PbS
M EE IR E N 700 'C, BEAREEF TR ERLER,
R B2 75 PbSO, 22 BLA% 40 i R 5 Pb, - BRUARIE S

BrAL s e oAt T 3d
EESA

B PbO, AFIT PbS A, kR R (34)Fl
(35)0 NI/l B B KR AT o A 1R A A P AT R
0@ femtn. BB, FAR SOV W(36): A

MAEWERAL KRR, AGAIN T AR PR R S
§ﬁ2% ISRy, BP Al st ¥kl 69.76% (14 Al
71.89% [MEE . &HXT 3 BG4 55 4 ZnFe,0, K1 EHE
HHEE, /N SR I P b BT P A A, i
A F ZnS B[R AR BY Fe,O,,  fi i 18 I R e A 0%k
SR SRR . B SRR P A ) R,
#r 153 FL 45 KFey(SO,),(OH).~ ZnFe,0, fil Zn,SiO, ,
ZHANG V@ W A s e, 3R 13 EEZ R R )
ZnS M FeS, REBEI B ik R 6 . AR ALY
M5 K o

Pb(Zn)SO,+4C=Pb(Zn)S+4CO(g) 31)
Pb(Zn)SO,+2C=Pb(Zn)S+2CO,(g) (32)
Pb(Zn)SO,+4CO(g)=Pb(Zn)S+4CO,(g) (33)
2Pb(Zn)SO,=2Pb(Zn)0+2S0,+0,(g) (34)
Pb(Zn)SO,+2C=Pb(Zn)+S0O,(g)*+2CO(g) 35)

16Pb(Zn)0+9FeS,—16Pb(Zn)S+2S0,(g)+3Fe,0,
(36)
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- - = -Fe-Ti-5-O (lmenite)

/
4 omsms, [/
/
/ReSHTi,0,
/

FeS+CrS /

N/

log[ p(S,)/10° Pa]
A

_6 ya 7
<—Fe+;é.s—>/
/

0,+Fe,THO +FeTiO

3

/

-Tr o !
2 /

&
&

FetCr,0,

|

1

1 l

1 |

1 Vo

1 1

1 1

e L5, [ 1
8 ‘ 'Fef-FeCrO:
] |

1 l

1 |

1 |

1 |

1 |

-10 | | | ]

Fe+FeCr,0,
Fe,0,+TiO,
Fe,0,+TiO,
Fe,0,+Fe,TiO,

-18 -14

-12 -10 =

|
N

|
AN

|
[\
o

log[ p(0,)/10° Pa]

B2 Fe-Cr/Ti-S-O 1A & K2R A A X A7 1

Fig. 2 Combined phase stability diagrams for Fe-Cr/Ti-S-O system (1100 C)
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B, BB AEEE . B EEEN RSN
Zn,SiO, [ TR MR, 30 I 70 5 Ak R 08 mh 4 B s
A, AR AR R AT, FAR RO L 2 (37)
F1(38):
7n,Si0,+2FeS,+C—27ZnS+Si0,+2FeS+CO,(g) (37)
Zn,Si0,+2FeS,+C+Na,CO,=
27nS+Na,SiO;+2FeS+2CO0,(g) (38)
RS AR, BN SRERE R N
I Si—O%E, BRI MEE T, FfE kIR
NRE Sy, OGRS AL A . KB K %
SEOSOERR AL R e H IS BRI 5, ONAR RO A
Ak, AR BB A K R K BE 4T R ZnS R FE O BEOK
ZnS R E AT IA $1) 2.63 um. 38 3 7 1 5 e I )
FERT LLER 2 ZnS HURLRE, B4R AR50 51705 % H At
Tt M B R VR AL ), 0 B JE 40 il e
1000 ‘CHI1100 “CJ5, ZnSHKiELRHRIE K.
223 EEEGTRRARE R
HEBITRNA N 2 REK, BR5 RN
AW ESr EENE AN . BRART 8 S R 1 re B
HUent, SRS E ), BN
(39), FFREATHRAL AL . HLBE TS YR IR AL T ek R
o, ARMESR, &R TEEPIR H MLA SR
5 BT Ja IR BEAT 20 M, R BILRE Je JE Vg g
82.45% 14 F11 78.18% MR AR H IR A T- 24 f . B
WO M BREERAAE R, AR R
R, RSB AL A RO . AR R
CaSO, i Fy5 ey, Hrge £ Pl Zn(OH), 3
fPAE, K5 #2rp CaSO, T 78 Mk /), HAk /R M
L3 (40). ZHANG ZEPMER 5 UR Rs e il e
RGBS B2 W) 2 EAHE ZnS. CaCO, Fl CaS; %
R ORIERR I &, W] {23 CaSO, I CaS ¥
b, FEAK SO, IHERG, Bk s N L (41):

Cu(Ni, Zn)(OH),—Cu(Ni, Zn)O+H,0(g) (39)
CaS0,+Zn0+2C=2ZnS+CaCO,+CO,(g) (40)
CaS0,+2C—CaS+2C0,(g) (41)

224 WKIBALAELE
RRAF N EED AL AR, fln
EE P KPR E N ZnO AP AE, JFHEE A

Fe,0;. SiO, f1 ALO, S5 4. CAK TR AR () kAT
KRREENR, SICEVHBEAHRHI AR FLAESED
X K5 Be G B P=IEAT AR A3 T, R I ) ZnS 25
an e, HSBET Y8 BB RS BE AN
A LAEMYIAE, 8] DASGE VAR Z [ A R
RSP BRI R T B AR R kR &
IR S AIEAFAERL BT A0 1) 7], WANG 5P
WEFE R I, 8 I R e IR B R ZnS R KK,
iR FE IS 850°C Ja K bRl H A AR T i, 38
VB F AT U2 ZnS FORL A A 4G

3 MULKEERIKRETEWR

PR EOARIE T 2 B i ATk, T EAR
I T < JAR B A 2 P AN [R) A A6 W W A 2 T A
A, XYIE T 2 & R AT IE FAE R AL I 1
B

3.1 “BiiER-RHITE

FERRNA AT, B0 S AR T TR ARk 1 5
B, ARA ‘B RE-R T T EENTE
350~400 C FFATEALKE R, BI AT E 4L h CuS H
FeS,, HRRPN(42), A58 BRI 2
T ORI, SEIARERI 73 BS . & T CuS 5 FeS,
2 V) R R AT 6 257, PADILLA 2558935 K5 e 7=
T TR B, R B CuS 2 55 7F FeS, Bk (1) %1 ,
BA T cu (iR, il H,S0,-0, MR HiiA &,
45 min N 90% HIARBE H . Z L 2R DL 5
MERHRG A BT, BRAGR e ORI A i A
s REER EAE Y, PADILLA %5 0:% H
H,S0,-NaCl-O, ¥ 4 5 &b 3 SHAS A K5 e 7= 4
AR P PSR TR 0.2%.
2CuFeS,+S,—2CuS+2FeS, (42)

32 “MIER-ELTZ

o A A TR SR, Fln
SnS. [HM, EXSEHBAEN AR “ B R be-
R T2, ¥ SnO, # ALy SnS A A%k, LB
BB . BT bE T A B AL R AR A A
Bk, MIMTFZI SnS AL BANE A, AL [ B
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o TR AR R BE A E . YU TR cO Ak
YRR JEFIBT, T ™A% 2 ) FCAE RS etk & P i &
B, HCOFEITEAM2EMRGHRREA, 2CO
G m i SRS E S R EBEAE AL
FUBE, 22 PR B 08 i S0 AR R kA 4
WANG SR, 2R e Bk I 950 “Ci,
EOGRT TR R A S, HR R R T
L, BRE e e ERIC. ZHANG & —
SEVGEEN, BEEIR AL . AT (R ATEY Ina Ak 75
&, AIREPNEGRRMIIE R R BRG]
M RE, YU SES IG5tk IR Se IS e, HomT
7E N, +CO+CO, H) U5 N 4 th CO. H,S. SO, M
COS, W] [A] I VR A B AL 7R AL S5 7)o Bk 43 B8 8 ik
Ah, R Sb,O, Bt &% 5 9k H Sb,S, MM Z& <L
KIRE R, AL SECOSR A “Rif ek L
2 SR AR B AT 5 255 BH AR U B
TAN SR % L2000 B A TR i gf, 32 %2
I FH B A0 5 458 SR Al S AR 2 v [ 4 44 (Sb, - As),0;,
fif 5] 45 44 1 Sb AR AL A Sb,S, FI AT, As,0, 75 LA
fif SRR K

4 REERIE

FARbe 2 — MR RN, HEE
PR 28 1) S B 2% AR A B e S A . 4 T 7E
B EDUE SR AL R A AR ALY B B PR 4R
bro S ALBRACRE ORI 20 22 0 W AN TEBEFE4R
i JRTGR AT MR B ERR AL S ML EAT, JF LR ki A%
TRE ST IR IR )R AN A 751 P 2 P e B <
JR IR . ST R ZRALTI B e e 1) %
AR AT P B T R A R e R S, il i i 2
BRI, AR R R H BRI R R, A R
T HEE PRI RERE" s 2) BRERVE N BRAGT RE m2
AFIANHAbERITR, HESERFTTAER &
SEHREOR; 3) BB FER R T T B R
RS, AR A, HR LT 15
AR TR h BB A L, BT RE S &
JEAE AR A AN B 4, SN < R T [ AL

B0 ) A AR R R T S ) L e 7 T AR
MIEER R, BRI, BARE BN LA Bt A 45 4 58

B ARSI A E B H I, BT A
IO PR S 2% AL ST A 0 4R T 465 A A it AR 11
SN, CURTHE SRR, PRmRERIRE . (SR kA
VENBRALFIFIR DO 670, A G BR A (R T 45
), PEE S RRIRE . (E A SRR A Bed AR
A KA A, I RARA TSN, £
SRR RE RBARR 7L 1) MR & @Bk
[ T 45 R P i AORL BEAE A R e (M 28 2) W
TR Ie I P PR A P S A T A KWL, 58 3 AR AR 1Y
WA 3) FFR AL I AW 45 & AR K 1R
Izl

PAERFFERISE 3, AIAEBR AR o8 A il it A 5 4
SEREME SR, X B E SR 5 5 B
ZHM,
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Research status and prospect of
sulfidation roasting for heavy metals recovery

HE Zhuang-zhi', ZHU Yang-ge', LIU Mu-dan®>, ZHANG Xing-rong', HE Xiao-juan®

(1. State Key Laboratory of Mineral Processing Science and Technology,
BGRIMM Technology Group, Beijing 102628, China;
2. State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,
Institute of Resource Utilization and Rare Earth Development,

Guangdong Academy of Science, Guangzhou 510650, China)

Abstract: It's difficult to use flotation for heavy metals recovery from oxide ore or secondary resource. But
through the pretreatment of sulfidation, heavy metal sulfides, with strong floatability, can be generated in the
material. In sulfidation technology, heavy metals can be sulfidated in the medium-high temperature roasting
atmosphere, which can improve the sulfidation rate of heavy metals and physicochemical properties of the
material. Therefore, the sulfidation roasting, which has high efficiency and strong applicability, has been widely
used in the pretreatment of refractory materials. By combining the thermodynamic analysis of the sulfidation
reaction of heavy metals and the research examples of sulfidation roasting in oxide ore and secondary resource, the
influences of roasting conditions on the formation and property of heavy metal sulfides were analyzed. Then, from
the standpoint that the ultimate goal of sulfidation is effective separation of metals, the research contents of
sulfidation roasting that should be perfected in the future were concluded, and the future technological
development was prospected.
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