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5.07 um B, EHSEES AR 0 B - R AR G R 5 AR 16
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BEAT Rt FOUI A [ L B FAS [ 4R M R A4 R R -
IR FR,  HHEREEARY) & B DU A

Ub A, A R ) A R R TR T TR
150 CAH1200 C, PRIENO.1 um i, BEA SEAF
RAR R E N RS - R &R, W1 . ME
AT AR, B RSN, MEHR SN
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Fig. 11  Stress—strain curves predicted by model at different
strain rates: (a) 150 ‘C, 9.1 pm; (b) 200 C, 9.1 um
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Hot tensile behavior and constitutive model of
AZ31B magnesium alloy sheet under ultrasonic vibration

LIAO Juan', ZHANG Li-xia', ZHENG Ting-jian', SU Hua?, GUO Jin-quan'

(1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China;
2. MCC Ramu New Energy Technology Co., Ltd., Tangshan 063299, China)

Abstract: The effects of temperature and ultrasonic vibration on the mechanical behavior of AZ31B magnesium
alloy sheet were studied by ultrasonic vibration assisted hot tensile tests. The results show that with the applying of
the ultrasonic vibration, the yield strength and tensile strength are decreased, the elongation and plasticity are
improved, and the onset of the dynamic recrystallization is delayed. With the increase of the amplitude, the yield
strength and tensile strength further decrease, while the elongation first increases and then decreases. Comparing
with that without ultrasonic vibration, the elongation under the vibration of 9.1 um increases by 32.3% (150 C)
and 23.2% (200 C), respectively, to the maximum extent among the experimental results. Based on the thermal
activation mechanism and dislocation density evolution theory, the constitutive model used to describe the hot
tensile behavior of Mg alloy sheet under ultrasonic vibration is established. The performance of this model is
evaluated by the experiment. The model can effectively predict the stress-strain responses of materials under
different temperatures and amplitudes, and the predictive curves are in good agreement with the experimental
curves. It provides a theoretical basis for the finite element simulation of metal sheet in hot plastic forming under
ultrasonic vibration.

Key words: magnesium alloy; constitutive model; ultrasonic vibration; tensile test; mechanical behavior
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