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Schematic diagram of OM and TEM sampling
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Fig. 4 Microstructures in different areas of AM before and after heat treatment: (a)—(c) Represent top, middle and bottom of
AM before heat treatment; (d)—(e) Represent top, middle and bottom of AM after heat treatment

1 SIS AN A X R RS AR 4L
Table 1

before and after heat treatment

Grain size changes in different areas of AM

Size/um
State
Bottom Middle Top Average
AM 12.1 10.6 8.2 10.3
AM+HT 42.5 42.7 423 42517

AM: Additive materials; AM-+HT: After heat treatment, AM
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Fig. 5 XRD patterns in different areas of AM before and

after heat treatment
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Tale 2 Relative content of phase in different areas of AM before and after heat treatment

Relative mass fraction/%

State
Bottom Middle Top
a(Al) Fe,Si ALCuMg a(Al) Fe,Si Fe,Si o(Al) Fe,Si Al,CuMg
AM 95.8 3.7 0.5 95.6 3.6 0.8 95.4 3.4 1.2
AM+HT 88.7 2.7 8.61 88.4 2.7 891 88.9 2.6 851

6 FASEER TR A AN F X 38 5 A TEMAR

Fig. 6 TEM images of precipitates in different areas of AM before and after heat treatment: (a) BM; (b) AM-top; (c) AM-

bottom; (d) AM+HT
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Table 3 Precipitates size changes in different areas of AM

before and after heat treatment

State Location Rod Elliptical
BM - 116.7(d,), 446.6(/) -
To - 81.3(d
AM P (d,)
Bottom - 128.6(d,)
AM+HT - 80.3(d)), 153.9(1)  72.1(d,)

d, and [ represent rod diameter and length; d, represents long

axis of elliptical
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Fig. 7 HRTEM images of precipitates in different areas of AM before and after heat treatment: (a) BM; (b) AM-top; (c) AM-

bottom; (d) AM+HT
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Table 4 Relationship between precipitates and matrix in

different areas of AM before and after heat treatment

) Lattice . )

State Location . Relationship
misfit, 0
BM - 0.04 Coherent
Top 0.12 Semi-coherent
AM

Bottom 0.43 In-coherent

AM+HT - 0.02 Coherent
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Fig. 8 Microhardness distribution along thickness direction

of AM
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Table 5 Schematic diagram of microstructure evolution of AM before and after heat treatment

) ) Precipitates Precipitates ) ) Microhardness,
State Location  Grain morphology . Relationship
fraction/% morphology HV
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5 7
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AM+HT - 8.7 Og0o 1351
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Effect of heat-treatment on microstructure of 2024 aluminum alloy
by stationary shoulder friction stir additive manufacturing

FU Xu-rong"*, XING Li*, HUANG Chun-ping’, LIU Fen-cheng®, KE Li-ming'-*

(1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University,
Xi’an 710072, China;
2. Zhejiang EO. Paton Welding Technology Research Institute, Hangzhou 311200, China;
3. National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,
Nanchang Hangkong University, Nanchang 330063, China;
4. COMAC Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 200436, China)

Abstract: The 2024 aluminum alloy additive bulk was fabricated by the stationary shoulder friction stir additive
manufacturing. Heat treatment was conducted on the addictive bulk. The microstructure was observed by OM. The
content and morphology of the second phase were analyzed by XRD and TEM respectively. The effect of heat
treatment on microstructure and properties of the additive bulk was analyzed under the consideration of
microhardness. The results show that the re-crystallized fine equiaxed grains appear in the additive bulk sample.
The grain size gradually decreases from the bottom to the top. While the content of the precipitates and
microhardness gradually increase from the bottom to the top. The maximum microhardness and average
microhardness values are 99 HV and 86.5 HV respectively. After heart treatment, a large number of S” phases with
rod and ellipsoidal shape re-precipitated, and dispersely distribute in the a(Al) matrix, the relationship between
precipitates and the matrix is coherent with each other. The process precipitation of the precipitates is a(Al)—
S’ (Al,CuMg). More homogeneous and significantly increased microhardness are acquired, the average microhardness
value is 135 HV, which should be attributed to the precipitation of a fine second phase, inducing in the
precipitation strengthening.

Key words: heat treatment; stationary shoulder FSAM; aluminum alloy; microstructure characteristic; Precipitates
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