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Density functional theory study on solid solution phase
of LaNissAlys hydrogen storage alloys
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Abstract: Based on the density functional theory (DFT) and full-potential linearized augmented plane wave (FLAPW)
method, the hydrogen occupied sites, electron densities and densities of states were analyzed for the solid solution phase
a-LaNi sAlg sHo s and a-LaNig sAlysH o. The hydrogen atom in a-LaNi, sAlgsHg s is found to prefer the 6m position near
aluminum atom, the two hydrogen atoms in a-LaNi4sAlysHg sH; o are most likely to take the 6m and 4h* sites by total
energy minimization calculation. The lattice expansion is mainly along the ¢ axis. The interaction between aluminum and
nickel, hydrogen plays a dominant role in the stability of LaNigsAly sH, solid solution phase. The smaller the shift of E
towards higher energy region, the more stable the compounds will be. The calculated results are compared with the
existent experimental data and discussed in light of previous works.
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Table 1 Total energy and interstitial sites in unit cell of LaNi4 sAlgsHg s

Site X y z Energy/13.6 eV
3f 0.5 0.5 0.016 2 —61 851.026 5
4h 0.3321 0.668 2 0.503 1 —61 852.7195
6m 0 0 0.2500 —61 852.984 1
120 0.204 1 0.407 8 0.576 2 —61 852.792 3
12n 0.309 2 0.647 0 0.486 2 —61 851.1129
3f* 0.500 0 0.499 9 0.4720 —61 852.7129

4h* 0.3395 0.6550 0.1829 —61 851.293 3

6m* 0.1354 0.272 6 0.749 9 —61 852.676 9

120%* 0.223 3 0.4352 0.162 7 —61 852.7723

12n* 0.467 2 0.000 2 0.058 9 —61 851.026 6

The sites marked with ‘*’ represent the sites in the unchanged LaNis unit cell, those without ‘*” denote the sites in Al-substituted unit cell.

F 2 LaNigsAlgsH, o St H 7 HOALE A I B e &

Table 2 Total energy and interstitial sites in unit cell of LaNiy sAlysH; o

Site X y z Energy/13.6 eV
4h 0.254 7 0.8124 0.653 0 —61 850.797 3
12n 0.477 5 0.996 6 0.559 7 —61 851.016 8
120 09178 0.1354 0.760 6 —61 853.708 6
4h* 0.3392 0.654 6 0.1828 —61 853.851 5
6m* 0.168 4 0.3172 0.2533 —61 853.851 0
12n* 0.469 8 0.000 1 0.059 4 —61 853.846 4

The sites marked with “*’ represent the sites in the unchanged LaNis unit cell, those without ‘*’ denote the sites in Al-substituted unit cell.
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