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Effects of dilation angle on failure process and mechanical behavior
for rock specimen with random material imperfections

WANG Xue-bin

(Department of Mechanics and Engineering Sciences, Liaoning Technical University, Fuxin 123000, China)

Abstract: For rock specimen with smooth ends and with initially random material imperfections, the effects of dilation
angle (DA) on the failure process and stress—strain curve were numerically modeled using FLAC in uniaxial plane strain
compression. Using a written FISH function, the initial imperfections within the specimen were prescribed. For intact
rock exhibiting linear strain-softening behavior beyond the occurrence of failure and then ideal plastic behavior, the
failure criterion is a composite Mohr-Coulomb criterion with tension cut-off. Initial imperfection undergoes ideal plastic
behavior beyond the occurrence of failure. Rock specimen with higher DA is subjected to severe failure in the final
deformation stage. Wider and steeper shear bands are observed at higher DA. The effects of DA on the stress—axial
strain curve can be neglected. Less steep stress—lateral strain curve at post-peak is expected at higher DA since the
contribution of the increase in shear band width to lateral strain exceeds the contribution of the increase in shear band
inclination according to an analytical expression proposed by Wang and coworkers. Higher DA leads to higher value of
maximum shear strain increment within the specimen. Therefore, more apparent precursor to failure can be observed at
higher DA. Shear band inclination is closer to Arthur theory and is lower than Coulomb theory. Higher DA results in
higher values of shear strain and volumetric strain in shear band.
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Fig.3 Failure process (a—h) and macroscopic stress—axial strain curve (i) for scheme 1 (y=5°): (a) 5 000; (b) 6 000; (c) 7 000;

(d) 8 000; (e) 9 000; (f) 10 000; (g) 11 000; (h) 12 000 timesteps
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Fig.4 Failure process (a—h) and macroscopic stress—axial strain curve (i) for scheme 2 (y=15"): (a) 5 000; (b) 6 000; (c) 7 000;

(d) 8 000; (e) 9 000; (f) 10 000; (g) 11 000; (h) 12 000 timesteps
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Fig.5 Failure process (a—h) and macroscopic stress—axial strain curve (i) for scheme 3 (y=25°): (a) 5 000; (b) 6 000; (c) 7 000;
(d) 8 000; (e) 9 000; (f) 10 000; (g) 11 000; (h) 12 000 timesteps
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Fig.6 Failure process (a—h) and macroscopic stress—axial strain curve (i) for scheme 4(¥=35"): (a) 5 000; (b) 6 000; (c) 7 000;
(d) 8 000; (e) 9 000; (f) 10 000; (g) 11 000; (h) 12 000 timesteps
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Fig.8 Shear strain increments of schemes 1—4 when strain-softening behavior just occurs: (a) Scheme 1; (b) Scheme 2; (c) Scheme

3; (d) Scheme 4
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Fig.9 Shear strain increments of schemes 1—4 at 12 000 timesteps: (a) Scheme 1; (b) Scheme 2; (c) Scheme 3; (d) Scheme 4
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Fig.10 Volumetric strain increments of schemes 1—4 at 12 000 timesteps: (a) Scheme 1; (b) Scheme 2; (c) Scheme 3; (d) Scheme 4
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Table 1 Predictions according to Coulomb, Roscoe and Arthur’s inclination and present numerical results

Dilation Initial internal friction Coulomb Roscoe Arthur Numerical
angle/(°) angle/(°) inclination/(°) inclination/(®) inclination/(®) results/(°)
5 44 67 47.5 57.25 57.6
15 44 67 52.5 59.75 58.3
25 44 67 57.5 62.25 60.6
35 44 67 62.5 64.75 62.2
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