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Microstructure evolution of AZ91D magnesium alloy during
high temperature compression
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Abstract: High temperature compression tests of AZ91D magnesium alloy were performed on Gleeble-1500 thermal
mechanical simulator at strain rate of 0.01 s ' and temperature of 400 ‘C. The microstructure evolution of the alloy
during compression was examined by optical microscope (OM) and transmission electron microscope (TEM). The results
show that {1012} twin is primary deformation mechanism and the size of twins is larger at the initial stage of
compressive deformation, however, these larger twins will be fragmented and become small under large deformation.
With the increasing of strain, some twins cross each other and dynamic recrystallization (DRX) grains are nucleated at
twin boundaries and twin intersections.
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Fig.l Typical compressive true stress—strain curve of

AZ91D magnesium alloy during compression
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Fig.2 Optical microstructures of alloy compressed to different strains: (a) e=1%; (b) &=10%; (¢) &=60%; (d) e=100%
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Fig.3 Dislocation structures in alloy compressed to different strains: (a) e&=1%; (b) &=10%; () &=60%; (d) e=100%
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Fig.4 Twins and their SADPs in AZ91D magnesium alloy at Fig.5 Twins structure in AZ91D magnesium alloy at strain of
strain of 1% 10%
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Fig.7 Microstructures of twins and recrystallization grains in AZ91D magnesium alloy at strain of 100%
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1] 5’%‘@ }TV%E , A mﬂﬁiﬁ% E':] , Al U\/ﬁ;jj ﬁén HH for superplastic flow in an AZ61 magnesium alloy[J]. Acta Mater,
BRI 1999, 47(14): 3753-3758.
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