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Modeling on fracture toughness and tensile ductility of Al-Cu-Mg alloy

SONG Min, YUAN Tie-chui, ZHANG Fu-qin, HUANG Bai-yun, CHEN Kang-hua

(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)

Abstract: A meso-scaled model was developed for the fracture toughness and tensile ductility of Al-Cu-Mg alloy based
on the fact that the volume fraction of microcracks caused by the constituents cracking satisfies Weibull distribution
under externally applied stress. Model analysis indicates that the volume fraction of microcracks caused by the
constituents cracking increases with the externally applied stress. Under the same externally applied stress, the volume
fraction of the microcracks increases with that of the constituents. The model calculation indicates that the fracture
toughness and tensile ductility of Al-Cu-Mg alloy decrease as the size and volume fraction of the constituents increase.
Thus, both purification and enhanced solution treatment can improve the tensile ductility and fracture toughness of
Al-Cu-Mg alloy by decreasing the volume fraction and size of the constituents.
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Fig.1 Geometric model for fracture toughness and tensile

ductility
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Al-Cu-Mg alloy
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and fracture toughness of Al-Cu-Mg alloy
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Table 1 Effects of two solution treatments on tensile ductility

and fracture toughness of Al-Cu-Mg alloy
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