

Selective recovery of lithium from spent lithium iron phosphate batteries using oxidation pressure sulfuric acid leaching system

De-you WU^{1,2,3,4}, Dong-xing WANG^{1,2,3}, Zhi-qiang LIU^{1,2,3}, Shuai RAO^{1,2,3}, Kui-fang ZHANG^{1,2,3}

1. Institute of Resource Utilization and Rare Earth Development, Guangdong Academy of Sciences,
Guangzhou 510650, China;

2. State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangzhou 510650, China;

3. Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Guangzhou 510650, China;

4. Guangdong Brunn Recycling Technology Co., Ltd., Foshan 528100, China

Received 5 May 2021; accepted 27 December 2021

Abstract: Oxidation pressure leaching was proposed to selectively dissolve Li from spent LiFePO₄ batteries in a stoichiometric sulfuric acid solution. Using O₂ as an oxidant and stoichiometric sulfuric acid as leaching agent, above 97% of Li was leached into the solution, whereas more than 99% of Fe remained in the leaching residue, enabling a relatively low cost for one-step separation of Li and Fe. And then, by adjusting the pH of leachate, above 95% of Li was recovered in the form of the Li₃PO₄ product through iron removal and chemical precipitation of phosphate.

Key words: spent LiFePO₄ batteries; oxidation pressure leaching; separation; Li; Fe; lithium phosphate

1 Introduction

Lithium-ion batteries (LIBs) are widely used in portable appliances and electric vehicles due to their excellent cycle performance, high discharge voltage and energy density [1–3]. Among various current cathode materials, olivine-structured lithium iron phosphate (LiFePO₄) has attracted wide attention for its high theoretical specific capacity (170 mA·h/g), low price, stable structure, high safety, and environment-friendly performance [4]. Therefore, LiFePO₄ is considered as the most promising cathode material for power batteries in electric vehicles and hybrid electric vehicles [5]. With an increasing demand for LiFePO₄ batteries, it is inevitable to produce a large number of spent LiFePO₄ batteries. The direct disposal of these spent batteries will cause serious environmental problems due to some harmful chemical substances

in them. Moreover, valuable metals such as Li and Fe are also discarded [6]. Therefore, it is urgent to develop a green and feasible process for the treatment of spent LiFePO₄ batteries.

Currently, the direct regeneration of spent LiFePO₄ is viewed as a low-cost and relatively simple recycling method [7,8]. Considering the fact that the structure of the LiFePO₄ materials has been destroyed after thousands of cycles, regenerated cathode materials are unable to perform perfectly compared with the original materials [9]. Although some studies have been conducted for improving the performance of regenerated LiFePO₄ via doping with other materials [10,11], problems with an unstable product quality still remain. Another alternative method is to extract valuable metals from spent materials via hydrometallurgy with mineral acid including H₂SO₄ [12], HCl [13], H₃PO₄ [14,15] or organic acid [16,17] as the leaching agent. As LiFePO₄ is rather stable with an

Corresponding author: Zhi-qiang LIU, Tel: +86-20-61086372, E-mail: 1031494987@qq.com;

Shuai RAO, Tel: +86-15084917790, E-mail: 491660987@qq.com

DOI: 10.1016/S1003-6326(22)65931-4

1003-6326/© 2022 The Nonferrous Metals Society of China. Published by Elsevier Ltd & Science Press

olivine structure, the amount of acid added must greatly exceed the stoichiometric consumption required, leading to a large amount of wastewater and an elevated recycling cost [18–21]. In order to solve these problems, selective leaching of Li from spent LiFePO₄ has been proposed, which is able to simultaneously achieve enriched Li solution and FePO₄ precipitate [22]. LI et al [23] adopted near stoichiometric H₂SO₄ to treat spent LiFePO₄ cathode materials. The leaching efficiencies of Li and Fe are 96.85% and 0.027%, respectively. Likewise, YANG et al [24] applied acetic acid to achieve 95.05% of Li and 0.93% of Fe in leaching efficiencies from LiFePO₄ cathode scrap. The selective leaching presents a huge advantage for separation of Li and Fe; however, the reagents such as organic acids and H₂O₂ are relatively expensive. Moreover, Li recovery within the existing selective leaching methods is not sufficient. Therefore, selective leaching of Li with a high efficiency using certain green, inexpensive, or recyclable reagents should be the objective of future research on the treatment of spent LiFePO₄ batteries.

Pressure leaching technology is viewed as a green and strengthening leaching process, which has been successfully applied in the hydro-metallurgical extraction of non-ferrous metals [25]. In this study, the technology was proposed to selectively extract Li from spent LiFePO₄ batteries by using green and inexpensive O₂ as the oxidant and low concentration of H₂SO₄ as the leaching agent. And then the resulting solution was further purified through a deep iron removal procedure. Finally, the Li in the leaching solution was recovered as Li₃PO₄ product.

2 Experimental

2.1 Materials

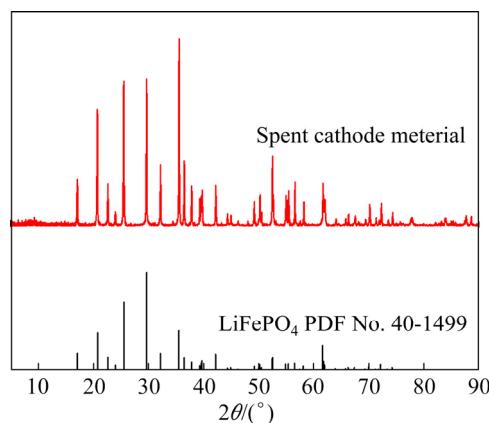

The spent LiFePO₄ batteries were provided by Guangdong Guanghua Tech. Co., Ltd., China. Before leaching, the material was pretreated to remove impurities including aluminum and copper. All chemical reagents, including H₂SO₄, NaOH, and Na₃PO₄·12H₂O, were of analytical grade. The purity of the oxygen used was above 99%.

Table 1 lists the contents of main elements in the spent LiFePO₄ cathode material. The scrap contained 34.1% of Fe, 4.5% of Li, and 19.4% of P. X-ray diffraction (XRD) pattern of the cathode

material (Fig. 1) shows that LiFePO₄ was the only phase existing in the present scrap.

Table 1 Contents of main elements in spent cathode material (wt.%)

Fe	Li	P	C	Others
34.1	4.5	19.4	1.42	40.58

Fig. 1 XRD patterns of spent LiFePO₄ cathode material and standard LiFePO₄

2.2 Selective leaching of Li from spent cathode materials

The leaching experiments were performed in a 250 mL high-pressure autoclave device (HT-250KC-C, Shanghai Huotong, China). A total of 10 g of the spent cathode material was mixed with a certain amount of H₂SO₄ in the reaction vessel. After installation, the sealed autoclave was heated to the designed temperature. And then, the valve of the O₂ tank was opened to control the pressure inside the autoclave and stirring was conducted at 500 r/min. At certain time intervals, O₂ input and stirring were immediately stopped. Moreover, the autoclave was removed and placed in tap water to cool to 20–30 °C. Finally, the pressure in the autoclave was released through the outlet valve. The solution was separated from the residue by vacuum filtration. The pH of the leaching solution was measured via a pH meter. The residue was washed with ultrapure water several times and dried in a vacuum oven at 80 °C for 12 h and then weighed.

To evaluate the degree of selective Li leaching from the spent LiFePO₄ cathode material, a parameter, that is, the “selectivity (S_{Li})” was introduced, which was the Li concentration divided by the sum of the concentrations of Li and Fe in the solution, expressed as follows:

$$S_{\text{Li}} = \frac{\rho_{\text{Li}}}{\rho_{\text{Li}} + \rho_{\text{Fe}}} \times 100\% \quad (1)$$

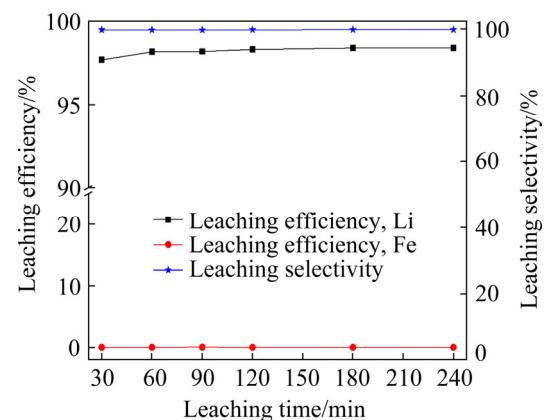
where ρ_{Li} and ρ_{Fe} were Li and Fe concentrations (g/L) in the solution, respectively.

2.3 Lithium recovery by chemical precipitation

During the oxidation pressure leaching process, a small amount of Fe entered into the leaching solution. To obtain a pure Li-containing solution, the leaching solution was treated by adding a 1 mol/L NaOH solution. The Li recovery was conducted in a stirring water bath. A Na₃PO₄ solution (100 g/L) of the stoichiometric amount was added into the purified leachate at a speed of 3–8 mL/min through a peristaltic pump. The chemical precipitation was controlled at 95 °C for 0.5 h. After completing precipitation, the solution and precipitate were separated via vacuum filtration immediately. The product was subsequently dried in a vacuum oven at 95 °C for 12 h. The obtained mother liquor contained a high concentration of sodium sulfate, which was further treated by means of evaporation crystallization or freezing crystallization for recovering Na₂SO₄ according to its solubility characteristics [26].

2.4 Characterization

The morphology of the solid sample was characterized by scanning electron microscopy (SEM; FEI QUANTA650). The phase of the solid sample was analyzed by X-ray diffraction (XRD; BRUKER QUANTAX) with Cu K_α radiation under an accelerating voltage of 40 kV and a tube current of 30 mA. The data were collected by step scanning with a scanning speed of 10 (°)/min and a scanning angle (2θ) of 5°–90°. The iron valence of the solid sample was detected by X-ray photoelectron spectroscopy (XPS; Thermo Fisher Scientific K_α). The metal contents of the solid sample were analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES; SPECTRO ARCOS).


3 Leaching parameters

3.1 Selective leaching of Li from spent cathode materials

3.1.1 Effect of leaching time

Figure 2 shows the effect of leaching time on the leaching efficiencies of Li and Fe. It can be seen

that more than 97.65% of Li was leached into the solution within only 30 min. When the leaching time increased to 90 min, the Li leaching efficiency was enhanced to 98.15%. Continuing to extend the leaching time has little effect on the Li leaching efficiency (only increased to 98.37% in 240 min). The Fe leaching efficiency in each leaching experiment remained stable ranging from 0.032% to 0.044%, suggesting an efficient separation of Li and Fe.

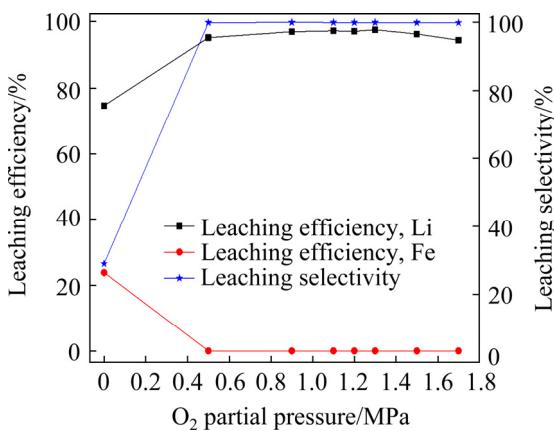
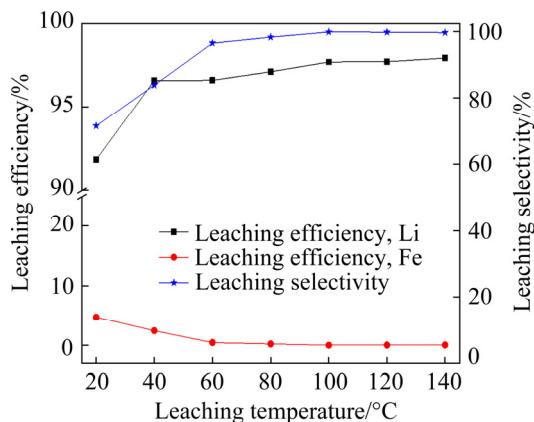


Fig. 2 Effect of leaching time on leaching of metals from spent LiFePO₄ cathode material (1.3 MPa O₂ partial pressure, 0.6 mol/L H₂SO₄, H₂SO₄/Li molar ratio of 0.60:1, and 140 °C)

3.1.2 Effects of O₂ partial pressure and temperature


The effect of O₂ partial pressure on the leaching efficiencies of Li and Fe was investigated in detail and the results are shown in Fig. 3. When O₂ partial pressure was 0 (no O₂ input), only 74.7% of Li was leached whereas Fe leaching efficiency was above 23.8%. In the absence of oxidizing atmosphere, soluble Fe²⁺ species were stable in the leaching solution, resulting in a low leaching selectivity. As O₂ was introduced into the autoclave, Fe²⁺ was oxidized into Fe³⁺ and then reacted with PO₄³⁻ or OH⁻ to form the insoluble substances. Under the condition of 1.3 MPa O₂ partial pressure, Li leaching efficiency reached 97.66% whereas Fe leaching efficiency gradually decreased to 0.005%. The leaching selectivity was as high as 99.96%, indicating a perfect separation efficiency of Li and Fe. However, with an increasing O₂ partial pressure from 1.3 to 1.7 MPa, Li leaching efficiency was reduced from 97.66% to 94.50% instead. The results could be attributed to different Fe precipitation mechanisms under various O₂ partial pressure conditions. Based on XRD analyses,

FePO₄ precipitate was observed with the O₂ partial pressure above 1.5 MPa, while Fe₅(PO₄)₄(OH)₃·2H₂O precipitate was formed below 1.5 MPa.

Fig. 3 Effect of O₂ partial pressure on leaching of metals from spent LiFePO₄ cathode material (0.3 mol/L H₂SO₄, H₂SO₄/Li molar ratio 0.50:1, 100 °C, and 90 min)

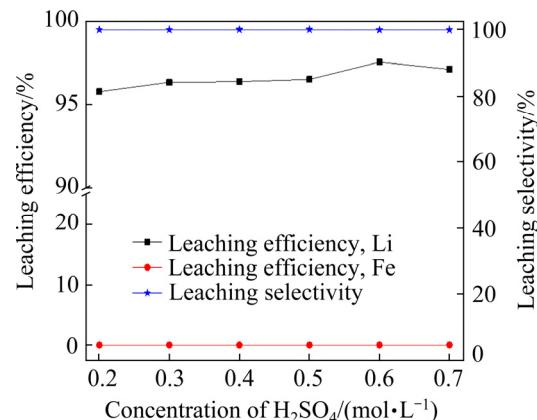

Figure 4 indicates the effect of temperature on the leaching efficiencies of Li and Fe. As observed in Fig. 4, an increasing reaction temperature was beneficial to Li leaching and Fe precipitation. Less than 91.8% of Li was leached into the solution whereas the dissolution of Fe was above 4.7% at 20 °C. The leaching selectivity was as low as 71.58%. When the reaction temperature increased to 100 °C, Li and Fe leaching efficiencies were 97.69% and 0.012%, respectively. An increasing reaction temperature intensified the hydrolysis reaction of Fe³⁺, which could provide additional H⁺ for the dissolution of Li, thus improving the leaching efficiency and selectivity of Li.

Fig. 4 Effect of leaching temperature on leaching of metals from spent LiFePO₄ cathode material (1.3 MPa O₂ partial pressure, 0.6 mol/L H₂SO₄, H₂SO₄/Li molar ratio 0.50:1, and 90 min)

3.1.3 Effects of H₂SO₄ concentration and H₂SO₄/Li molar ratio

To further investigate reagent consumption on the Li and Fe leaching efficiencies, leaching experiments with different H₂SO₄ concentrations and H₂SO₄/Li molar ratios were carried out. As shown in Fig. 5, H₂SO₄ concentration exerted no obvious effect on the Li and Fe leaching efficiencies. Above 96% of Li and less than 0.015% of Fe were leached at the H₂SO₄ concentration ranging from 0.2 to 0.7 mol/L. The leaching selectivity in each experiment was stable in the range from 99.68% to 99.99%. Compared with conventional atmospheric leaching, the consumption of H₂SO₄ was reduced significantly during the oxidation pressure leaching, which was beneficial to the subsequent Li recovery procedure.

Fig. 5 Effect of H₂SO₄ concentration on leaching of metals from spent LiFePO₄ cathode material (1.5 MPa O₂ partial pressure, H₂SO₄/Li molar ratio 0.50:1, 100 °C, and 90 min)

It can be seen from Fig. 6 that H₂SO₄/Li molar ratio played a key role in the leaching process. A relatively high H₂SO₄/Li molar ratio was beneficial to Li leaching. As the H₂SO₄/Li molar ratio increased from 0.45:1 to 0.60:1, Li leaching efficiency also rose from 95.11% to a peak of 98.15%. Fe leaching efficiency in each leaching experiment remained between 0.032% and 0.047%, indicating that an approximately stoichiometric sulfuric consumption could obtain an efficient separation of Li and Fe.

3.2 Characterization of leaching residue

To understand the phase transformation mechanism during the oxidation pressure leaching, XRD, SEM and XPS analyses of the leaching

residues collected were performed. Various phases including FePO_4 , $\text{FePO}_4 \cdot 2\text{H}_2\text{O}$, and $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ are shown in Fig. 7. Figure 8 illustrates the relationship among the leaching residue phase and temperature and oxygen partial pressure. There were two main phases in these leaching residues, i.e., $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ (PDF No. 45-1436) and FePO_4 (PDF No. 37-0478). It was easy to form FePO_4 precipitate at a lower temperature below 80 °C whereas the occurrence of $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ required a higher temperature above 100 °C. Moreover, the phase of the leaching residue was independent of the O_2 partial pressure. However, when the temperature

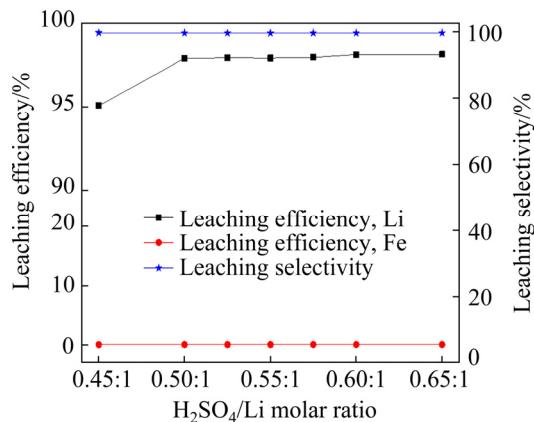


Fig. 6 Effect of $\text{H}_2\text{SO}_4/\text{Li}$ molar ratio on leaching of metals from spent LiFePO_4 cathode material (1.3 MPa O_2 partial pressure, 0.6 mol/L H_2SO_4 , 140 °C, and 90 min)

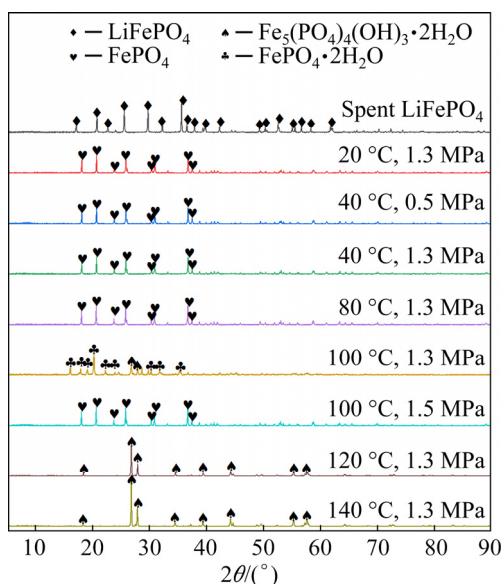


Fig. 7 XRD patterns of raw LiFePO_4 cathode scrap and final products at different leaching temperatures and O_2 partial pressures

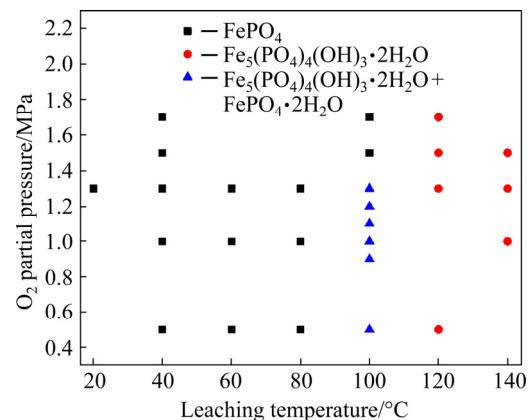


Fig. 8 Relationship among leaching residue phase and temperature and O_2 partial pressure

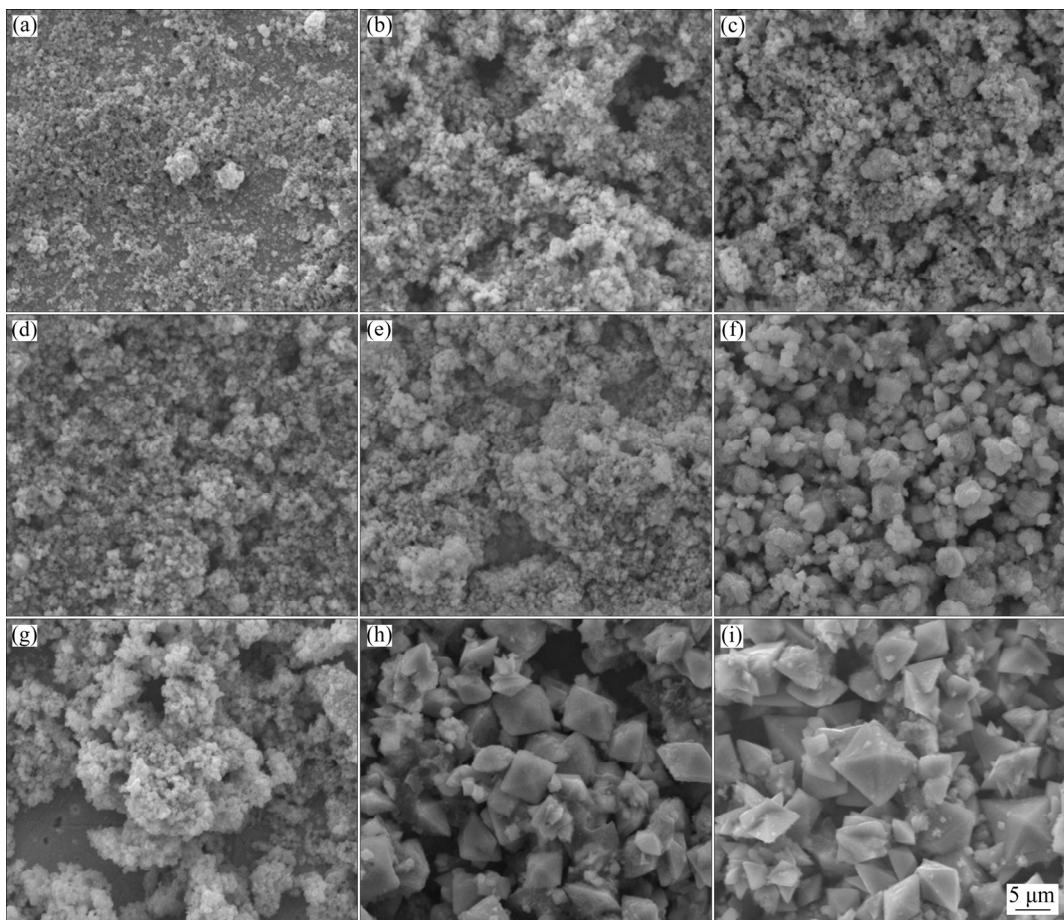
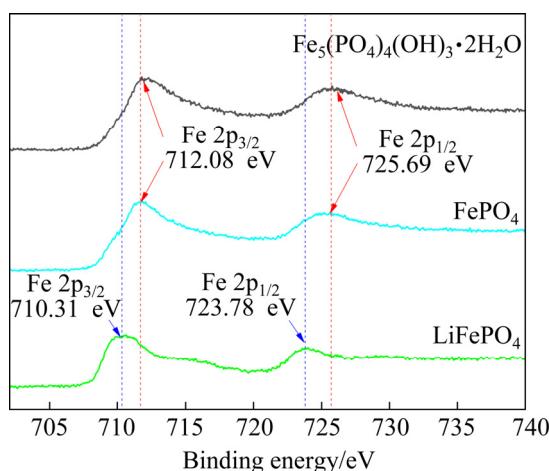

was 100 °C, the required O_2 partial pressure for FePO_4 formation was above 1.5 MPa. The relatively low O_2 partial pressure below 1.5 MPa promoted the formation of $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ and $\text{FePO}_4 \cdot 2\text{H}_2\text{O}$ simultaneously.

Figure 9 shows SEM images of the leaching residues obtained under various experimental conditions. The morphology and particle size of FePO_4 were similar to the raw LiFePO_4 cathode scrap as shown in Figs. 9(a) to (e) and (g). The main reason was that LiFePO_4 and FePO_4 exhibited an orthorhombic olivine structure [27,28]. It can be seen from Figs. 9(f, h, i) that the leaching residues were composed of many blocky particles. However, the particle size from Fig. 9(f) was smaller compared with that from Fig. 9(h) owing to the presence of $\text{FePO}_4 \cdot 2\text{H}_2\text{O}$ phase. A higher reaction temperature promoted the formation of $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ from Fig. 9(i), presenting an entirely different morphology (i.e., an octahedral structure) as well as a larger particle size.

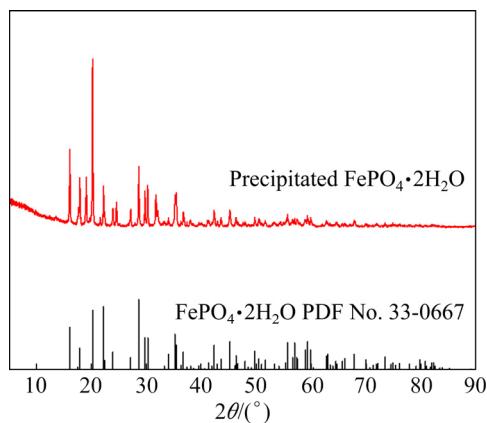

Figure 10 shows the XPS spectra of the LiFePO_4 cathode scrap and several leaching residues. In the $\text{Fe} 2\text{p}_{1/2}$ and $\text{Fe} 2\text{p}_{3/2}$ regions, the characteristic peaks of Fe^{2+} from spent LiFePO_4 materials occurred at binding energies of 710.31 and 723.78 eV. The characteristic peaks of Fe^{3+} at 712.08 and 725.69 eV were observed in the leaching residues, indicating that nearly all Fe^{2+} in the material was oxidized to Fe^{3+} by the oxidation pressure leaching [29,30].

3.3 Recovery of Li as Li_3PO_4

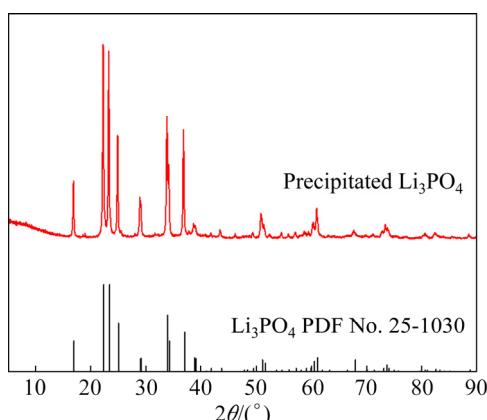
Compared with conventional FePO_4 precipitate, the obtained $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ precipitate

Fig. 9 SEM images of raw LiFePO₄ cathode scrap (a) and final products at different leaching temperatures and O₂ partial pressures (b–i), with the same other conditions: (b) 20 °C, 1.3 MPa; (c) 40 °C, 0.5 MPa; (d) 40 °C, 1.3 MPa; (e) 80 °C, 1.3 MPa; (f) 100 °C, 1.3 MPa; (g) 100 °C, 1.5 MPa; (h) 120 °C, 1.3 MPa; (i) 140 °C, 1.3 MPa

Fig. 10 XPS spectra of raw LiFePO₄ cathode scrap and FePO₄ and Fe₅(PO₄)₄(OH)₃·2H₂O leaching residues


presented broad application prospects owing to its unique catalytic property and ion exchange capacity, which was widely used in high-tech fields [31–33], including catalysis, biology, and sewage treatment.

Therefore, O₂ partial pressure of 1.3 MPa, H₂SO₄ concentration of 0.6 mol/L, H₂SO₄/Li molar ratio of 0.525:1, reaction temperature of 120 °C, and reaction time of 90 min were selected as the optimized leaching conditions. Under these conditions, the leaching efficiencies of Li and Fe were 97.82% and 0.022%, respectively.


In order to produce the Li₃PO₄ product with a high purity, a small proportion of Fe impurity should be removed preferentially. Therefore, the pH of the leaching solution was adjusted to 5.0 through adding 1 mol/L NaOH solution. As a result, Fe concentration in the resulting solution dropped from 95.4 to 0.327 mg/L owing to the formation of FePO₄·2H₂O precipitate, as shown in Fig. 11. During the Fe removal procedure, the loss rate of Li was about 0.1%.

The Li₃PO₄ product was prepared via adding a 100 g/L Na₃PO₄ solution. About 60% of Li in the leaching solution could precipitate as the Li₃PO₄

product due to the presence of a large amount of PO_4^{3-} in the solution. Therefore, only 50% of the required theoretical amount of Na_3PO_4 was added to the purified solution to precipitate Li. The reaction was performed in a water bath at 95 °C for 30 min. After completing the process, Li concentration in the mother liquor was decreased from 5.3 g/L to 89 mg/L, indicating that about 97.97% of Li in the solution was recovered as the Li_3PO_4 product. The XRD pattern, shown in Fig. 12, demonstrated an exact match of the standard diffraction peaks for Li_3PO_4 . The resulting mother liquor contained a higher concentration of Na_2SO_4 , which was further treated to recover the $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$ byproduct via evaporation crystallization or freezing crystallization.

Fig. 11 XRD patterns of precipitated $\text{FePO}_4 \cdot 2\text{H}_2\text{O}$ and standard $\text{FePO}_4 \cdot 2\text{H}_2\text{O}$

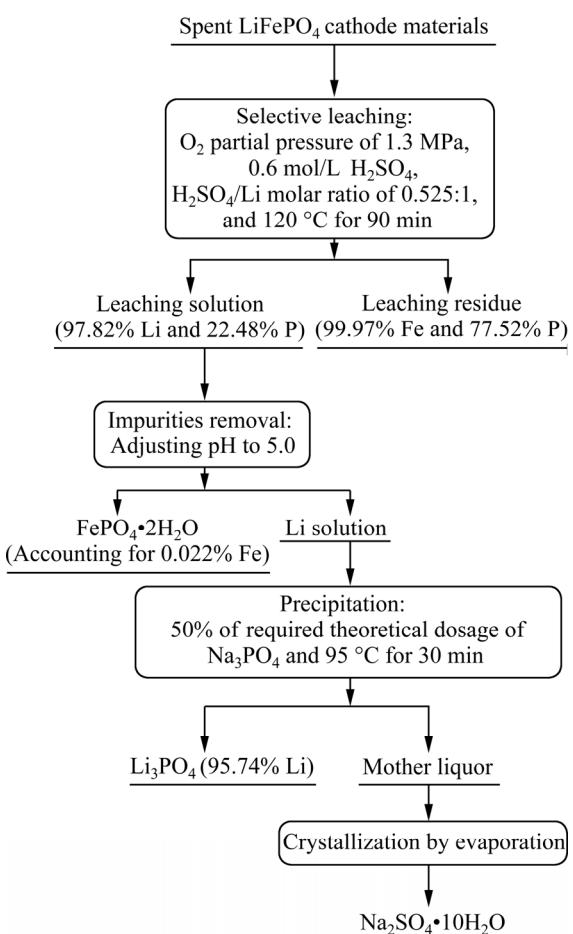


Fig. 12 XRD patterns of recovered Li_3PO_4 product and standard Li_3PO_4

3.4 Development of new green spent LiFePO_4 recycling process

Based on the above-mentioned analysis results, a novel and green recycling process, including leaching, purification, and precipitation, was

presented in Fig. 13. During the oxidation pressure leaching, more than 97% of Li was dissolved into the solution, whereas more than 99% of Fe precipitated in the leaching residue, indicating an efficient Li–Fe separation. And then, a thorough Fe removal procedure was conducted with a total loss rate of Li below 0.1%. Finally, more than 95% of Li was recovered through chemical precipitation for producing the Li_3PO_4 product with a high purity. The proposed process presented a significant potential of the effective treatment of spent LiFePO_4 batteries, contributing to environmental protection, sustainable economy, and social development.

Fig. 13 New and green recycling process for treatment of spent LiFePO_4 batteries

4 Conclusions

(1) More than 97% of Li was selectively dissolved into the solution with a H_2SO_4 concentration of 0.6 mol/L, a $\text{H}_2\text{SO}_4/\text{Li}$ molar ratio of 0.525:1 and O_2 partial pressure of 1.3 MPa at 120 °C for 90 min.

(2) More than 99% of Fe remained in the leaching residue in the form of FePO_4 (below 80 °C) or $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ (above 100 °C) precipitate.

(3) The remaining Fe impurity was thoroughly removed through adjusting pH to 5.0 with a total Li loss rate of 0.1%.

(4) The high purity Li_3PO_4 was successfully produced with a total Li recovery of 95.74%.

Acknowledgments

The authors are grateful for the financial supports from the National Natural Science Foundation of China (Nos. 51804083, 52104395, 21906031), the Natural Science Foundation of Guangdong Province, China (No. 2019A1515011628), the Science and Technology Planning Project of Guangdong Province, China (No. 2017B090907026), and the Special Program of Guangdong Academy of Sciences, China (Nos. 2019GDASYL-0103069, 2020GDASYL-0104027, 2020GDASYL-0302004, 2020GDASYL-0302009, 2021GDASYL-0302004).

References

- [1] BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries [J]. *Angewandte Chemie (International Edition)*, 2008, 47(16): 2930–2946.
- [2] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective [J]. *Journal of the American Chemical Society*, 2013, 135(4): 1167–1176.
- [3] YANG Jian, JIANG Liang-xing, LIU Fang-yang, JIA Ming, LAI Yan-qing. Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant [J]. *Transactions of Nonferrous Metals Society of China*, 2020, 30(8): 2256–2264.
- [4] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. *Journal of the Electrochemical Society*, 1997, 144(4): 1188–1194.
- [5] RITCHIE A, HOWARD W. Recent developments and likely advances in lithium-ion batteries [J]. *Journal of Power Sources*, 2006, 162(2): 809–812.
- [6] REN Guo-xing, XIAO Song-wen, XIE Mei-qi, PAN Bing, CHEN Jian, WANG Feng-gang, XIA Xing. Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on $\text{FeO}-\text{SiO}_2-\text{Al}_2\text{O}_3$ slag system [J]. *Transactions of Nonferrous Metals Society of China*, 2017, 27(2): 450–456.
- [7] LI Jian, WANG Ya, WANG Li-hua, LIU Bin, ZHOU Hong-ming. A facile recycling and regeneration process for spent LiFePO_4 batteries [J]. *Journal of Materials Science: Materials in Electronics*, 2019, 30(15): 14580–14588.
- [8] WANG Li-hua, LI Jian, ZHOU Hong-ming, HUANG Zu-qiong, TAO Sheng-dong, ZHAI Bing-kun, LIU Liang-qin, HU Le-shan. Regeneration cathode material mixture from spent lithium iron phosphate batteries [J]. *Journal of Materials Science (Materials in Electronics)*, 2018, 29(11): 9283–9290.
- [9] LI Li, BIAN Yi-fan, ZHANG Xiao-xiao, YAO Ying, XUE Qing, FAN Er-sha, WU Feng, CHEN Ren-jie. A green and effective room-temperature recycling process of LiFePO_4 cathode materials for lithium-ion batteries [J]. *Waste Management*, 2019, 85: 437–444.
- [10] SONG Wei, LIU Jian-wen, YOU Lei, WANG Shi-quan, ZHOU Qin-wen, GAO Ying-long, YIN Ruo-nan, XU Wen-jia, GUO Zai-ping. Re-synthesis of nano-structured LiFePO_4 /graphene composite derived from spent lithium-ion battery for booming electric vehicle application [J]. *Journal of Power Sources*, 2019, 419: 192–202.
- [11] ZHU Pei-pei, YANG Zhen-yu, ZHANG Hai, YU Ji, ZHANG Ze, CAI Jian-xin, LI Chao. Utilizing egg lecithin coating to improve the electrochemical performance of regenerated lithium iron phosphate [J]. *Journal of Alloys and Compounds*, 2018, 745: 164–171.
- [12] ZHENG Ru-juan, ZHAO Li, WANG Wen-hui, LIU Yuan-long, MA Quan-xin, MU De-ying, LI Ru-hong, DAI Chang-song. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method [J]. *RSC Advances*, 2016, 6(49): 43613–43625.
- [13] WANG Xuan, WANG Xian-you, ZHANG Rui, WANG Yu, SHU Hong-bo. Hydrothermal preparation and performance of LiFePO_4 by using Li_3PO_4 recovered from spent cathode scraps as Li source [J]. *Waste Management*, 2018, 78: 208–216.
- [14] BIAN Du-cheng, SUN Yong-hui, LI Sheng, TIAN Yuan, YANG Ze-heng, FAN Xiao-ming, ZHANG Wei-xin. A novel process to recycle spent LiFePO_4 for synthesizing LiFePO_4/C hierarchical microflowers [J]. *Electrochimica Acta*, 2016, 190: 134–140.
- [15] CHEN Xiang-ping, LI Jia-zhu, KANG Duo-zhi, ZHOU Tao, MA Hong-rui. A novel closed-loop process for the simultaneous recovery of valuable metals and iron from a mixed type of spent lithium-ion batteries [J]. *Green Chemistry*, 2019, 21(23): 6342–6352.
- [16] CHEN Xiang-ping, KANG Duo-zhi, LI Jia-zhu, ZHOU Tao, MA Hong-rui. Gradient and facile extraction of valuable metals from spent lithium-ion batteries for new cathode materials re-fabrication [J]. *Journal of Hazardous Materials*, 2020, 389: 121887.
- [17] FAN Er-sha, LI Li, ZHANG Xiao-xiao, BIAN Yi-fan, XUE Qing, WU Jia-wei, WU Feng, CHEN Ren-jie. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach [J]. *ACS Sustainable Chemistry & Engineering*, 2018, 6(8): 11029–11035.
- [18] CHEN Xiang-ping, LI Qing-wen, SONG Ji-shun, SONG Da-wei, ZHANG Lian-qi, SHI Xian-xing. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO_4 batteries [J]. *Green Chemistry*, 2016, 18(8): 2500–2506.

[19] LIU Kang, TAN Quan-yin, LIU Li-li, LI Jin-hui. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution [J]. *Environmental Science & Technology*, 2019, 53(16): 9781–9788.

[20] CAI Guo-qiang, FUNG K Y, NG K M, WIBOWO C. Process development for the recycle of spent lithium ion batteries by chemical precipitation [J]. *Industrial & Engineering Chemistry Research*, 2014, 53(47): 18245–18259.

[21] JIANG You-zhou, CHEN Xiang-ping, YAN Shu-xuan, LI Shu-zhen, ZHOU Tao. Pursuing green and efficient process towards recycling of different metals from spent lithium-ion batteries through ferro-chemistry [J]. *Chemical Engineering Journal*, 2021, 426: 131637.

[22] TAO Sheng-dong, LI Jian, WANG Li-hua, HU Le-shan, ZHOU Hong-ming. A method for recovering Li_3PO_4 from spent lithium iron phosphate cathode material through high-temperature activation [J]. *Ionics*, 2019, 25(12): 5643–5653.

[23] LI Huan, XING Sheng-zhou, LIU Yu, LI Fu-jie, GUO Hui, KUANG Ge. Recovery of lithium, iron, and phosphorus from spent LiFePO_4 batteries using stoichiometric sulfuric acid leaching system [J]. *ACS Sustainable Chemistry & Engineering*, 2017, 5(9): 8017–8024.

[24] YANG Yong-xia, MENG Xiang-qì, CAO Hong-bin, LIN Xiao, LIU Chen-ming, SUN Yong, ZHANG Yi, SUN Zhi. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process [J]. *Green Chemistry*, 2018, 20(13): 3121–3133.

[25] HAN B S, ALTANSUKH B, HAGA K, STEVANOVIĆ Z, JONOVIC R, AVRAMOVIC L, UROSEVIĆ D, TAKASAKI Y, MASUDA N, ISHIYAMA D, SHIBAYAMA A. Development of copper recovery process from flotation tailings by a combined method of high-pressure leaching-solvent extraction [J]. *Journal of Hazardous Materials*, 2018, 352: 192–203.

[26] ZHANG Jia-liang, HU Jun-tao, LIU Yu-bo, JING Qian-kun, YANG Cheng, CHEN Yong-qiang, WANG Cheng-yan. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO_4 batteries [J]. *ACS Sustainable Chemistry & Engineering*, 2019, 7(6): 5626–5631.

[27] LI Zheng, LIU Dong-fu, XIONG Jia-chun, HE Li-hua, ZHAO Zhong-wei, WANG De-zhi. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis [J]. *Waste Management*, 2020, 107: 1–8.

[28] KUMAR J, SHEN Xing, LI Bo, LIU Hui-zhou, ZHAO Jun-me. Selective recovery of Li and FePO_4 from spent LiFePO_4 cathode scraps by organic acids and the properties of the regenerated LiFePO_4 [J]. *Waste Management*, 2020, 113: 32–40.

[29] DEDRYVÈRE R, MACCARIO M, CROGUENNEC L, LE CRAS F, DELMAS C, GONBEAU D. X-ray photoelectron spectroscopy investigations of carbon-coated Li_xFePO_4 materials [J]. *Chemistry of Materials*, 2008, 20(22): 7164–7170.

[30] RAMANA C V, MAUGER A, GENDRON F, JULIEN C M, ZAGHIB K. Study of the Li-insertion/extraction process in $\text{LiFePO}_4/\text{FePO}_4$ [J]. *Journal of Power Sources*, 2009, 187: 555–564.

[31] LI Shan-zhong, ZHANG Dong-en, LI Chang, MA Juan-juan, WANG Ming-yan, YANG Tao, HAN Gui-quan, TONG Zhi-wei, YANG Xu-jie. Hierarchical growth and shape evolution of iron hydroxyl phosphate dendrites obtained without surfactants for highly efficient adsorption of DNA [J]. *Inorganic and Nano-Metal Chemistry*, 2017, 47(5): 744–750.

[32] HAN Cheng-liang, ZHOU Min, YE Qing, YAO Li, XU Ze-zhong. Controllable synthesis of sphere- and star-like $\text{Fe}_5(\text{PO}_4)_4(\text{OH})_3 \cdot 2\text{H}_2\text{O}$ microcrystals for effective photo-Fenton-like degradation of rhodamine B [J]. *Inorganic and Nano-Metal Chemistry*, 2017, 47(6): 806–809.

[33] XU L, CHEN C, HUO J B, CHEN X X, YANG J C E, FU M L. Iron hydroxyphosphate composites derived from waste lithium-ion batteries for lead adsorption and Fenton-like catalytic degradation of methylene blue [J]. *Environmental Technology & Innovation*, 2019, 16: 100504.

氧压硫酸浸出废旧磷酸铁锂电池选择性回收锂

伍德佑^{1,2,3,4}, 王东兴^{1,2,3}, 刘志强^{1,2,3}, 饶 帅^{1,2,3}, 张魁芳^{1,2,3}

1. 广东省科学院 资源利用与稀土开发研究所, 广州 510650;
2. 稀有金属分离与综合利用国家重点实验室, 广州 510650;
3. 广东省稀土开发与应用重点实验室, 广东 510650;
4. 广东邦普循环科技有限公司, 佛山 528100

摘要: 采用氧压浸出法在化学计量硫酸溶液中从废旧磷酸铁锂电池中选择性浸出锂。以氧气作为氧化剂, 化学计量硫酸作为浸出剂, 97%以上的Li浸出至溶液中, 而99%以上的Fe保留在浸出渣中, 从而实现Li和Fe的低成本一步分离。通过调节浸出溶液pH深度除铁和磷酸盐沉锂, 制备 Li_3PO_4 产品, 锂回收率高于95%。

关键词: 废旧磷酸铁锂电池; 氧压浸出; 分离; 锂; 铁; 磷酸锂

(Edited by Wei-ping CHEN)