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Abstract: Palladium-supported cobalt hydroxide (Co(OH)2-Pd) nanoplates were fabricated in an aqueous solution and 
employed as a catalyst for the reduction of 4-nitrophenol. For the preparation of Co(OH)2-Pd, Pd nanoparticles were 
anchored on the Co(OH)2 nanoplates after the reduction of Na2PdCl4 by ascorbic acid in the absence of a stabilizer at 
room temperature. The observations under transmission and scanning electron microscopy reveal that Pd nanoparticles 
with a size of 2–5 nm are uniformly dispersed on the surface of the Co(OH)2 nanoplates. In catalytic test, the conversion 
of 4-nitrophenol to 4-aminophenol is completed within 6 min in the presence of Co(OH)2-Pd(1000) nanoplates with 
2.18 at.% Pd, and the corresponding kinetic constant is 0.0089 s−1 in the first test. The catalyst retains relatively high 
activity after several cycles. The results demonstrate that the Co(OH)2-Pd(1000) nanoplates exhibit high catalytic 
activity toward the reduction of 4-nitrophenol in the presence of NaBH4. 
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1 Introduction 
 

Nitrophenols, including para-, meta-, and 
ortho-nitrophenol, are a type of hazardous and toxic 
pollutants found in wastewater originating from 
industrial and agricultural sources. Para-nitrophenol 
(4-NP) has been listed as a priority pollutant by the 
US Environmental Protection Agency because of its 
high solubility and stability in water [1,2]. Many 
strategies have been developed for pollutant 
removal and conversion, such as adsorption, 
microbial/photocatalytic degradation, and catalytic 
oxidation/reduction [3−10]. In particular, the 
conversion of 4-NP to 4-aminophenol (4-AP) over a 
catalyst in an aqueous solution under mild 
conditions may be considered as an effective, 
energy-saving, and green strategy for wastewater 
treatment [11]. In addition, 4-AP is an important 

intermediate in the manufacture of analgesic and 
antipyretic drugs, such as acetanilide, paracetamol, 
and phenacetin [12]. Therefore, it is important to 
develop a process for the catalytic hydrogenation of 
4-NP to 4-AP. 

Among various catalysts, Pd has received 
considerable attention because of its high catalytic 
activity for the conversion of 4-NP. In particular, 
nanosized Pd particles with a large surface area 
exhibit high catalytic performance toward 4-NP 
hydrogenation [13]. However, Pd nanoparticles 
with high surface energy easily undergo 
aggregation during the process of synthesis and 
catalysis reactions. The coating of the surface of Pd 
nanoparticles with a stabilizer can effectively 
prevent aggregation. However, the presence of such 
a coating layer blocks the transfer of electrons, 
leading to a decrease in the catalytic activity [14]. 
In addition, small Pd nanoparticles are difficult to 
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separate from the treated solution, resulting in low 
recyclability [15,16]. Recently, a strategy to 
immobilize Pd on various carriers (e.g., carbon 
materials, metal and metal oxides, metal/covalent 
organic frameworks, silicon materials, and zeolitic 
imidazolate frameworks) has been considered to be 
effective because of the recyclability of the 
composite systems and prevention of aggregation 
during the treatment of 4-NP [17−23]. LIU et     
al [24] loaded Pd nanoparticles on 3D-printed 
hierarchically porous TiO2 scaffolds, which showed 
excellent catalytic activity (1063 times higher than 
that of the Pd/TiO2-bulk material) and high 
reusability (no obvious decrease in catalytic activity 
after 20 cycles). However, the complex fabrication 
process and high energy input (long synthesis time 
and high reaction temperature of 900 °C) to 
synthesize TiO2 scaffolds severely limit the 
application and development of such systems. 
Among various carrier materials, Co(OH)2 is 
effective because of its excellent electrochemical 
properties, simple synthesis, and low cost. LONG  
et al [25] deposited Pt−Au alloy nanoparticles on 
ultrathin α-Co(OH)2 nanoplates via one-pot 
synthesis. The prepared Pt−Au/Co(OH)2 
nanocomposites exhibited excellent catalytic 
activity and stability toward the catalytic reduction 
of 4-NP in the presence of NaBH4. In addition, 
other metals such as Pt, Pd, and Cu were also 
anchored on Co(OH)2, and the performance of  
such composite systems as catalysts was 
investigated [26−28]. 

In this work, Co(OH)2-Pd nanoplates were 
synthesized in the aqueous phase without the use of 
a stabilizer at room temperature. In the process, the 
pre-prepared Co(OH)2 nanoplates were employed 
as support, and ascorbic acid was served as a 
reducing agent. Small Pd nanoparticles were well 
dispersed on the surface of Co(OH)2 after the 
reduction of Na2PdCl4 by ascorbic acid in a 
stabilizer-free aqueous solution. Finally, the 
catalytic performance of the Co(OH)2−Pd 
nanoplates toward the reduction of 4-NP was 
evaluated. 
 
2 Experimental 
 
2.1 Materials 

Cobalt chloride hexahydrate (CoCl2·6H2O, 
99%), n-octylamine (C8H19N, 98%), ascorbic acid 

(C6H8O6, purity ≥99%), sodium borohydride 
(NaBH4, 98%), branched polyethyleneimine   
(BPEI, Mr=60000, 50 wt.% in water), sodium 
tetrachloropalladate (Na2PdCl4, 98%), 4-nitrophenol 
(4-NP, C6H5NO3, 99%), and ethanol (C2H5OH, 
99.5%) were purchased from Innochem. 
 
2.2 Synthesis of Co(OH)2 nanoplates 

Well-dispersed Co(OH)2 nanoplates were 
fabricated according to a previously reported 
method [29]. BPEI (60 mg) and CoCl2·6H2O 
(2 mmol) were added to a vial, which was filled 
with water (8 mL). The vial was then placed in an 
oil bath with 90 °C and vigorously stirred. Next, 
octylamine (1 mL) was added to the vial. After 
60 min, the vial filled with Co(OH)2 suspension 
was removed from the oil bath and naturally cooled 
to room temperature. The pristine Co(OH)2 
nanoplates were redispersed in water (10 mL) after 
washing with ethanol and drying in a vacuum oven. 
 
2.3 Synthesis of Co(OH)2-Pd nanoplates 

The Na2PdCl4 solution (10 mmol/L) at various 
volumes (500, 1000, and 1500 μL) was added to an 
aqueous Co(OH)2 suspension (10 mL) and stirred at 
room temperature for 2 min. Then, the ascorbic acid 
solution (0.2 mol/L, 0.5 mL) was injected into the 
mixed suspension, followed by stirring for 20 min 
to obtain Co(OH)2-Pd nanoplates which were 
separated by centrifugation and dried in a vacuum 
oven at 60 °C for 12 h. The obtained samples are 
denoted as Co(OH)2-Pd(500), Co(OH)2-Pd(1000), 
and Co(OH)2-Pd(1500). 
 
2.4 Catalytic activity of Co(OH)2-Pd nanoplates 

The reduction of 4-NP was chosen to analyze 
the catalytic performance of the as-prepared 
Co(OH)2-Pd nanoplates. The Co(OH)2-Pd 
nanoplates (3 mg) were first added to a mixture 
containing 4-NP solution (5 mmol/L, 4.5 mL) and 
NaBH4 solution (1 mol/L, 0.5 mL). After addition, 
the mixed suspension was stirred continuously. At a 
certain time interval, 30 μL of the mixed suspension 
was injected into a quartz cuvette with 3 mL of 
water, and the corresponding UV-Vis spectra were 
recorded. 
 
2.5 Characterization 

Scanning electron microscopy (SEM) was 
conducted on a LEO SUPRA 55 microscope 
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(Germany, Oberkochen). Powder X-ray diffraction 
(XRD) analysis was performed on a Rigaku 
D-MAX/A diffractometer (Japan, Rigaku 
Corporation) at 35 kV and 35 mA. Transmission 
electron microscopy (TEM) was carried out on a 
JEM−2100F microscope. The composition of the 
samples was analyzed through energy-dispersive 
X-ray spectroscopy (EDS, INCA, Oxford Company) 
and X-ray photoelectron spectroscopy (XPS, 
Thermo Scientific K-Alpha spectrometer). The UV- 
Vis spectra were recorded using a Jasco UV-Vis 
spectrophotometer in the range of 250−550 nm. 
 
3 Results and discussion 
 
3.1 Characterization of Co(OH)2 nanoplates 

As shown in the SEM images of Figs. 1(a) and 
(b), most of the samples present hexagonal and 
round nanoplates. The Co(OH)2 nanoplates exhibit 
a wide size distribution. The mean size of the plane 
is (9.70±3.78) µm and the thickness is in the range 
of 200−400 nm. The XRD pattern shows a strong 
diffraction peak at 2θ=19.2°, which is assigned to 
the (001) facet of β-Co(OH)2 (Fig. 1(d), Joint 
Committee on Powder Diffraction Standards 
JCPDS file No. 30-0443). 

3.2 Characterization of Co(OH)2-Pd nanoplates 
The as-prepared Co(OH)2 nanoplates with 

two-dimensional structures were employed as 
carriers to fabricate the Co(OH)2-Pd(1000) 
nanoplates. As shown in Fig. 2(a), the low- 
resolution image of the sample demonstrates that 
the morphology of the product does not change 
during the fabrication process. By further observing 
the surface of the nanoplates (Figs. 2(b) and (c)), a 
large number of small nanoparticles are deposited 
on the surface of the nanoplates. During the 
synthesis, it is speculated that the Na2PdCl4 is first 
reduced to Pd after the addition of ascorbic acid. 
Then, active Pd attaches to the surface of Co(OH)2 
nanoplates and grows into a nanoparticle in the 
absence of a stabilizer. However, the characteristic 
diffraction peak associated with Pd is not observed 
in the XRD pattern, as shown in Fig. 2(d). This may 
be due to the low Pd content on the Co(OH)2 
nanoplates. 

Simultaneously, the hybrid nanoplate samples 
were analyzed through TEM. The images of 
Figs. 3(a, b) reveal the presence of large amounts of 
nanoparticles with a small size (2–5 nm) on the 
surface of the nanoplates. The TEM image with a 
high resolution, shown in Fig. 3(c), confirms that 

 

 
Fig. 1 SEM images (a, b), size distribution (c), and XRD pattern (d) of Co(OH)2 nanoplates 



Zeng-min TANG, et al/Trans. Nonferrous Met. Soc. China 32(2022) 1994−2002 1997

 

 
Fig. 2 SEM images (a, b, c) and XRD pattern (d) of Co(OH)2-Pd(1000) nanoplates 
 
the lattice distance of the nanoparticles is 
approximately 2.2 Å, which corresponds to the  
(111) facet of Pd. Furthermore, EDS mapping (see 
Figs. 3(d, e)) clearly shows that Pd is uniformly 
distributed on the surface of the nanoplates and the 
molar fraction of Pd is 2.18% (Fig. 3(f)). These 
results demonstrate that the Pd nanoparticles were 
formed and were anchored on the surface of the 
Co(OH)2 nanoplates to form the Co(OH)2-Pd 
nanoplates. 

XPS was conducted to investigate the valence 
states of Co, O, and Pd atoms in Co(OH)2-Pd(1000). 
Figure 4(a) shows XPS survey spectra of 
Co(OH)2-Pd(1000). The Co 2p spectrum shown in 
Fig. 4(b) consists of 2p3/2 and 2p1/2 peaks ascribed to 
the spin–orbit coupling. The main peaks are located 
at 779.08 and 794.58 eV, which are assigned to the 
binding energies of the Co2+ oxidation state. 
Furthermore, the spin-orbit splitting between Co 
2p1/2 and Co 2p3/2 is approximately 15.5 eV, thereby 
confirming the presence of Co2+ in the form of 
Co(OH)2 nanoplates. Two satellite peaks at 783.9 
and 800.7 eV indicate that Co mainly exists in the 
Co2+ state [30]. The O 1s core-level XPS spectrum 
is displayed in Fig. 4(c), only the strongest peak at 

530.4 eV is observed, which further indicates the 
existence of Co(OH)2 [31]. In Fig. 4(d), two peaks 
at 333.48 and 338.68 eV are attributed to 3d5/2 and 
3d3/2 of Pd (0), respectively. The weak peak at 
341.2 eV is assigned to the Pd(II) oxidation state, 
which may arise because of the incomplete reaction 
of the Pd precursor [32]. The XPS spectrum further 
confirms the presence of Pd nanoparticles in the 
zero-oxidation state. In addition, Pd content 
(3.14 at.%) measured by XPS is a little higher than 
that obtained through EDS, which further 
demonstrates that Pd nanoparticles are coated on 
the surface of Co(OH)2 to obtain the Co(OH)2-Pd 
hybrid nanoplates having a core–shell structure. 
 
3.3 Catalytic performance of Co(OH)2-Pd 

nanoplates 
The catalytic performance of the Co(OH)2-Pd 

nanoplates was estimated for the reduction of 4-NP 
to 4-AP in the presence of NaBH4. The results are 
shown in Fig. 5(a). Generally, the aqueous solution 
of 4-NP in the presence of NaBH4 can be 
transformed into 4-nitrophenolate ions. These ions 
exhibit strong absorption at 400 nm and 4-AP 
exhibits a weak absorption at around 300 nm. In 
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Fig. 3 TEM images (a, b, c), EDS mapping images of Co (d) and Pd (e), and EDS results (f) of Co(OH)2-Pd(1000) 
 
addition, the intensity of the absorption peak at 
400 nm is slightly decreased by only 13.4% after 
180 min in the absence of the catalyst, which 
indicates a low reaction rate only in the presence of 
NaBH4. In the presence of pristine Co(OH)2 
nanoplates, the peak intensity is reduced by 27.9% 
after 180 min, which demonstrates that pristine 
Co(OH)2 nanoplates exhibit low catalytic activity 
toward the reduction of 4-NP. According to the 
previous studies, Co(II) can accelerate the 
hydrolysis of NaBH4 [33,34]. During NaBH4 
hydrolysis, the accelerated electron transfer could 
promote the reduction of 4-NP. In contrast, NaBH4 
hydrolysis could result in NaBH4 deficiency during 
the catalytic process. Consequently, the complete 

transformation of 4-NP does not occur. In addition, 
NaBH4 hydrolysis in the presence of Co(II) could 
produce cobalt boride compounds, which could 
greatly reduce the stability of the catalyst, including 
those of Co(OH)2 and Co(OH)2-Pd. As catalysis 
occurs in the presence of Co(OH)2-Pd(1000), the 
intensity of the absorption peak at 400 nm 
decreases rapidly and the peak disappears within 
6 min, as shown in Figs. 5(a) and (b), 
demonstrating that the prepared Co(OH)2-Pd(1000) 
exhibits high catalytic activity and can be, thus, 
applied for the reduction of 4-NP. 

To determine the influence of Pd content on the 
catalytic properties, the performance of Co(OH)2- 
Pd(500) and Co(OH)2-Pd(1500) for the reduction of  
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Fig. 4 XPS spectra of Co(OH)2-Pd(1000) nanoplates: (a) Survey scan; (b) Co 2p peak; (c) O 1s peak; (d) Pd 3d peak 
 

 
Fig. 5 Catalytic conversion of 4-NP to 4-AP over different catalysts (a), UV-Vis spectra of Co(OH)2-Pd(1000) (b), 
Co(OH)2-Pd(500) (c), and Co(OH)2-Pd(1500) (d) used for 4-NP reduction 
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4-NP was also evaluated. As shown in Fig. 5(c), the 
conversion of 4-NP to 4-AP is completed after 54 
min over Co(OH)2-Pd(500), which demonstrates a 
lower catalytic rate than Co(OH)2-Pd(1000). This 
may be because Co(OH)2-Pd(500) has a lower Pd 
content on the Co(OH)2 nanoplates than Co(OH)2- 
Pd(1000). Furthermore, Co(OH)2-Pd(1500) with a 
higher Pd content only shows a slightly high 
catalytic rate, as shown in Fig. 5(d). In the absence 
of any stabilizer, the Pd nanoparticles probably 
undergo aggregation during the synthesis process, 
which eventually affects the performance of 
Co(OH)2-Pd(1500). Therefore, it is not necessary to 
further increase the content of Pd on the 
Co(OH)2-Pd nanoplates. Thus, the Co(OH)2- 
Pd(1000) nanoplates were used for the next test. 

Furthermore, the recyclability of Co(OH)2- 
Pd(1000) was investigated. After catalysis, the 
catalyst was separated by sedimentation and used 
for the next catalytic reaction. The pseudo-first- 
order kinetic model can be applied to determining 
the catalytic activity (Fig. 6), which can be defined 
by  
ln At=−kt  
where At is the absorbance at 400 nm corresponding 
to reduction time t, and k is the observed 
pseudo-first-order rate constant [35]. Table 1 lists 
the k and square of the correlation coefficient (R2) 
values for the first three tests. According to the 
linear relationship between ln At and t, the rate of 
constant of this reaction (k) in the first test is 
~0.0089 s−1, which indicates that Co(OH)2-Pd(1000) 
exhibits higher catalytic activity than Pd 
nanoparticles supported on mesoporous silica 
(0.004 s−1 vs 0.0089 s−1) and its catalytic activity is 
comparable to that of Pd NPs/CNT-220 (0.0105 s−1 
vs 0.0089 s−1) [36,37]. In addition, the k value 
decreases gradually in the second and third catalytic 
tests, which may be due to the instability of 
Co(OH)2 in the presence of NaBH4. 
 
Table 1 Parameters of pseudo-first-order kinetic model 
for catalytic reduction of 4-NP during first three catalytic 
tests 

Cycle R2 k/s−1 

1 0.9876 0.0089 

2 0.9777 0.0051 

3 0.9758 0.0041 

 

 
Fig. 6 ln At vs time plot for reduction reaction of 4-NP 
during first three catalytic tests 
 
4 Conclusions 
 

(1) By using a facile and economical method 
in the aqueous phase at room temperature, Pd 
nanoparticles (2−5 nm) are well dispersed on the 
surface of Co(OH)2 nanoplates in the absence of a 
stabilizer. 

(2) By changing the volume of the precursor 
(Na2PdCl4), the content of Pd on the Co(OH)2 
nanoplates could be adjusted. Among the samples, 
the Co(OH)2-Pd(1000) nanoplates with 2.18 at.% 
Pd show the capability to complete the conversion 
of 4-NP in 6 min and can be recycled several times. 

(3) The as-prepared Co(OH)2-Pd nanoplates 
exhibit high catalytic activity toward the reduction 
of 4-NP and good recyclability. We also believe that 
the proposed method can be extended to anchor 
other metals onto Co(OH)2 nanoplates. In addition, 
the stability of Co(OH)2-Pd(1000) needs to be 
improved by further research work. 
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无稳定剂水相体系中氢氧化钴纳米片沉积钯用于 
催化还原 4-硝基苯酚 
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摘  要：在水溶液中制备负载钯的氢氧化钴(Co(OH)2-Pd)纳米片，并将其作为催化剂用于还原 4-硝基苯酚。为了

制备Co(OH)2-Pd纳米片，Pd纳米颗粒在室温和没有稳定剂的情况下通过抗坏血酸还原Na2PdCl4后固定在Co(OH)2

纳米片上。透射电镜和扫描电镜观察表明，尺寸为 2~5 nm 的 Pd 纳米颗粒均匀地分散在 Co(OH)2纳米片表面。在

催化测试中，制备的 2.18% Pd(摩尔分数)沉积的 Co(OH)2-Pd(1000)纳米片可以在 6 min 内催化并完成 4-硝基苯酚

向 4-氨基苯酚的转化，第一次测试的动力学常数为 0.0089 s−1。该催化剂经过几个循环后仍保持较高的活性。结

果表明，在 NaBH4存在下，Co(OH)2-Pd(1000)纳米片对 4-硝基苯酚的还原表现出较高的催化活性。 

关键词：Pd 纳米粒子；Co(OH)2纳米片；无稳定剂；催化剂；4-硝基苯酚 
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