文章编号: 1004-0609(2007)02-0216-06

## MoSi<sub>2</sub>价电子结构分析及结合能计算

彭 可<sup>1</sup>, 易茂中<sup>1</sup>, 陶辉锦<sup>2</sup>, 冉丽萍<sup>1</sup>

(1. 中南大学 粉末冶金国家重点实验室,长沙 410083;2. 中南大学 材料科学与工程学院,长沙 410083)

**摘 要:**根据固体与分子经验电子理论,通过键距差(BLD)方法,计算了金属间化合物 MoSi<sub>2</sub>的价电子结构和理论结合能。结果表明,MoSi<sub>2</sub>理论结合能为1677.1 kJ/mol,与实验值吻合。由于 Si 原子偏移,沿〈001〉方向分布的 Si—Si 原子键共价电子数最多,n<sub>D</sub>=0.402 04。MoSi<sub>2</sub>晶体中含有较高密度的晶格电子,使 MoSi<sub>2</sub>具有良好的导电性。MoSi<sub>2</sub>晶体中键络分布不均匀性是导致晶体脆性的主要原因。

关键词:二硅化钼;价电子;结合能;脆性

中图分类号: TG 148 文献标识码: A

# Valence electronic structure analysis and cohesive energy calculation of MoSi<sub>2</sub>

PENG Ke<sup>1</sup>, YI Mao-zhong<sup>1</sup>, TAO Hui-jin<sup>2</sup>, RAN Li-ping<sup>1</sup>

(1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;

2. School of Materials Science and Engineering, Central South University, Changsha 410083, China)

**Abstract:** According to the empirical electron theory of solid and molecule, the valence electron structure and theoretical cohesive energy of  $MoSi_2$  were calculated by the BLD method. The results show that the theoretical cohesive energy of  $MoSi_2$  is 1 677.1 kJ/mol, which agrees well with the experimental data. Because of a shift in Si positions, the valence electrons between Si—Si atoms along <001> direction are the most ( $n_D = 0.402$  04). There are lattice electrons with higher densities in  $MoSi_2$ , which accounts for the good conductivity of  $MoSi_2$ . Also, it is speculated that the brittleness of  $MoSi_2$  can be explained primarily by a heterogeneity of bond distribution.

Key words: molybdenum disilicide; valence electron; cohesive energy; brittleness

金属间化合物 MoSi<sub>2</sub> 以其高熔点(2 030 ℃)、较低 密度(6.24 g/cm<sup>3</sup>)、优异的高温抗氧化性和耐蚀性、良 好的导电导热性而成为新型高温结构材料和微电子领 域的研究热点之一<sup>[1-2]</sup>。但 MoSi<sub>2</sub>在 900 ℃以下断裂韧 性仅为 2~4 MPa·m<sup>1/2</sup>,低温脆性妨碍了它的实际应用。 从价电子结构的层次去理解 MoSi<sub>2</sub>的一些重要性能, 对于有效改善材料的性能和更好的进行材料设计具有 重要意义。

MoSi<sub>2</sub>是一种道尔顿型金属间化合物,1900 ℃以

下为 C11<sub>b</sub>型体心正方结构(如图 1 所示),空间群为 I4/mmm, Mo 原子占据 2a(0,0,0)位,Si 原子占据 4e(0,0,u)位。MoSi<sub>2</sub>的理论研究已有较多工作涉及, 以前研究认为,尽管沿<001>方向 Mo、Si 原子层并非 交替堆垛,但在(001)面的面间距相等,即 u=c/3<sup>[3]</sup>。但 是,通过 X 射线粉末衍射的 Rietveld 精修<sup>[4]</sup>和单晶体 衍射法<sup>[5]</sup>测定 MoSi<sub>2</sub> 晶体结构,发现在<001>方向上 Si 原子向相邻的 Si 原子偏移,偏离 c/3 位置。 Bhattacharyya 等<sup>[6]</sup>利用自洽赝势电子理论计算了

基金项目: 国家自然科学基金资助项目(50472078); 教育部博士点基金资助项目(20040533006)

收稿日期: 2006-07-25; 修订日期: 2006-11-29

通讯作者:易茂中,博士,教授;电话: 0731-8830894; E-mail: yimaozhong@126.com



**图 1** C11<sub>b</sub>型 MoSi<sub>2</sub>的晶体结构

**Fig.1** Crystal structure of  $MoSi_2$  with  $C11_b$  structure

MoSi<sub>2</sub>的电子结构和理论结合能,发现当 Si 原子偏离 c/3 位置时,MoSi<sub>2</sub>总能量减小,但理论结合能与实验 值存在较大误差,且没有确切给出 MoSi<sub>2</sub>金属间化合 物金属键与共价键含量。而应用固体与分子经验电子 理论,可直接讨论金属间化合物中原子所处价态并半 定量给出原子键中共价键的相对贡献。周飞<sup>[7]</sup>用固体 与分子经验电子理论分析了 MoSi<sub>2</sub>的价电子结构,但 没有考虑 Si 原子的偏移对实验键距的影响,而实验键 距是确定原子杂化状态的重要参数。

本文作者利用固体与分子经验电子理论,考虑了 Si 原子的偏移,对 MoSi<sub>2</sub>进行价电子结构分析,并用 徐万东等<sup>[8]</sup>提出的过渡金属化合物晶体结合能公式计 算了 MoSi<sub>2</sub>的理论结合能,分析了 Si 原子偏移对价电 子结构的影响和 MoSi<sub>2</sub>晶体脆性产生的主要原因。

## 1 理论键距的计算

固体与分子经验电子理论的核心是原子的杂化状

#### 表1 从实验和理论计算获得的 MoSi2 晶胞结构参数

Table 1 Structure parameters of MoSi2 obtained from experiments and calculations

态和键距差法(Bond Length Difference, BLD)。键距差 法利用已知的晶格参数求得晶体中各原子的杂化和它 们之间的共价电子分布,建立起晶体或分子的价电子 结构<sup>[9]</sup>。进行 BLD 计算的前提条件是必须知道其晶体 结构,即要知道晶体结构类型、晶格常数和原子坐标 参数的具体数值。从实验和理论计算获得的 MoSi<sub>2</sub> 晶 胞结构参数列于表 1。本文作者采用文献[5]的晶胞结 构参数来计算实验键距,即 *a*=0.320 56 nm, *c*=0.78450 nm, *u*=0.263 03 nm。

利用式(1)可计算原子间键距。

$$D_a^{u-v} = \left\{ (x_u - x_v)^2 a^2 + (y_u - y_v)^2 b^2 + (z_u - z_v)^2 c^2 \right\}^{1/2}$$
(1)

式中 *u、v* 表示成键的两个原子,其坐标参数分别为 (*x<sub>u</sub>*, *y<sub>u</sub>*, *z<sub>u</sub>*)和(*x<sub>v</sub>*, *y<sub>v</sub>*, *z<sub>v</sub>*); *a、b、c* 为晶格常数。

通过分析 MoSi<sub>2</sub> 的晶体结构,位于中心结点的 Mo 原子和 8 个顶角的 Mo 原子为同类原子,位于体心 的 Si 原子和其他结点位置的 Si 原子也为同类原子。 所以,在 MoSi<sub>2</sub>的 Cl1<sub>b</sub>相结构具有 6 种不可忽略的键, 如图 1 所示,计算各键的实验键距为

 $D_{\rm A}$ =0.260 92 nm,  $D_{\rm B}$ =0.263 22nm,  $D_{\rm C}$ =0.263 03 nm,

 $D_{\rm D}$ =0.258 44 nm,  $D_{\rm E}$ =0.320 56 nm,  $D_{\rm F}$ =0.320 56 nm.

根据公式 Ia=IMISIK<sup>[8]</sup>可求出各键的等同键数为

$$I_{\rm A}$$
=32,  $I_{\rm B}$ =16,  $I_{\rm C}$ =8,  $I_{\rm D}$ =4,  $I_{\rm E}$ =16,  $I_{\rm F}$ =8.

EET 理论在计算晶体电子结构时采用键距差 (BLD)法。

由键距方程可知:

$$D_{uv}(n_{a})=R_{u}(l)+R_{v}(l)-\beta \lg n_{a}$$
因此任两键键距差为
(2)

$$D_{uv}(n_a) - D_{st}(n_{a'}) = R_u(l) + R_v(l) - R_s(l) + R_t(l) -\beta \lg(n_{a'}/n_a)$$
(3)

| Deres al mothed                  | Lattice par | ameter/nm | Si atomic | Deferreres       |           |
|----------------------------------|-------------|-----------|-----------|------------------|-----------|
| Research method                  | а           | С         | c/a       | u                | Reference |
| Powder method                    | 0.320 0     | 0.786 1   | 2.457     | 0.333 <i>c</i>   | [3]       |
| LAPW                             | 0.322 2     | 0.788 3   | 2.447     | 0.335 5 <i>c</i> | [10]      |
| Pseudo-potential                 | 0.320 2     | 0.785 2   | 2.452     | 0.337 4 <i>c</i> | [6]       |
| Retrieved refinement             | 0.320 64    | 0.784 78  | 2.448     | 0.335 3 <i>c</i> | [4]       |
| Single-crystal X-ray diffraction | 0.320 56    | 0.784 50  | 2.447     | 0.335 3 <i>c</i> | [5]       |

令 $r_{\alpha} = n'_{\alpha} / n_{\alpha}$ ,则得到一个包含 N-1 个方程的方 程组,称为 $r_{\alpha}$ 方程。

计算 MoSi<sub>2</sub>的价电子结构时将各键实验键距  $D(n_a)$ 和单键半距  $R_{Mo}(l)$ 、 $R_{Si}(l)$ 代入  $r_a$ 方程。其中, $R_{Mo}(l)$ 、  $R_{Si}(l)$ 分别由 Mo 和 Si 的杂化表提供。取  $\beta$ =0.060,由  $r_a$ 方程计算得到各  $r_a$ 值。

将  $r_{\alpha}$ 值代入  $n_{\alpha}$ 方程:  $n_{\alpha} = \sum n_{c} / \sum (I_{\alpha}r_{\alpha})$ , 求 出  $n_{\alpha}$ 值。根据 EET 理论,将所得  $n_{\alpha}$ 代入理论键距方 程,计算理论键距  $\overline{D}(n_{\alpha})$ 。

计算所得符合键距差条件的杂阶组合的  $n_{\alpha}$  的最大值为 0.3~0.7,表明  $\beta$  值选取正确。

#### 2 键能和理论结合能的计算

Mo一Mo 和 Si-Si 原子间共价键键能可用式(4) 计算:

$$E_a = bf \frac{n_a}{D_{(n_a)}} \tag{4}$$

Mo-Si原子间共价键键能可用式(5)计算,

$$E'_{a} = \overline{B}_{a} \overline{F}_{a} \frac{n_{a}}{D_{(na)}}$$
<sup>(5)</sup>

式中 b 为电子对核电荷的屏蔽作用系数,  $\overline{B}_a = \sqrt{b_u b_v}$ 。f为原子成键能力,  $\overline{F}_a = (f_u + f_v)/2$ 。

过渡金属化合物晶体结合能经验理论计算公式如下<sup>[8]</sup>:

$$\overline{E}_c = I - Y - \overline{E}_c^0 \tag{6}$$

式中 *I* 是在晶体中不同种类的原子间相互成键时, 多为键提供共价电子的原子的类离化能; *Y* 是当不同 种类原子成键时,少提供共价电子的原子的类亲和能。

$$I = 23.061 \ 8[a(\Delta n_c)^3 + b(\Delta n_c)^2 + c(\Delta n_c)] \cdot \exp[-(\Delta n_c + 0.693)]$$
(7)

$$Y = 23.0618 y \Delta n'_c \exp[-(\Delta n'_c + 0.693)]$$
(8)

式中 
$$\Delta n_c$$
 是多提供电子的原子"输出"的电子数;  $\Delta n'_c$ 

 Table 2
 Hybridization state parameters of Mo and Si atoms

表2 Mo和Si原子杂化状态参数

是少提供电子的原子"输入"的电子数; a、b、c为由 电离能实验数据确立的实验参数<sup>[11]</sup>; exp[ $-(\Delta n_c+0.693)$ ] 为衰变因子; y是原子亲合能;

 $\overline{E}_{c}^{0}$ 是与元素晶体类似的晶体结合能,其具体表达式为

$$\overline{E}_{c}^{0} = \sum_{a} \overline{B}_{a} \frac{I_{a} n_{a}}{\overline{D}_{(n_{a})}} \overline{F}_{a} + \overline{B}_{l} \frac{n_{l}}{\overline{D}} f' + b_{u} a m^{3d} + b_{u} C W \quad (9)$$

式中  $\overline{B}_{l} = (m+n) \overline{b}_{u} \overline{b}_{v}$ , m, n为分子式中包含的 $u \approx v$ 原子数及  $u_{m} v_{n} \circ n_{l}$ 为晶格电子数,  $f' = \sqrt{2n_{l}/n_{T}}$ 称 为晶格电子的成键能力,  $n_{T}$ 为总价电子数。 $\overline{D}$ 为等效 键距,  $\overline{D} = \sum I_{a} D(n_{\alpha}) / \sum I_{a} \circ a = 0.154$  2,  $m^{3d}$ 为原 子磁电子数。C = 4.535,  $W = (m_{T} = T + K = T) / M$ 壳 电子总数。

#### 3 MoSi<sub>2</sub>的价电子结构计算结果

根据 Mo 和 Si 的杂化表,将有关数据代入经验键 距公式和过渡金属化合物晶体结合能经验理论计算公 式,计算出各键距理论值和 MoSi<sub>2</sub>的理论结合能,再 结合实验键距及结合能实验值确定最佳组合杂阶 态<sup>[9,12-13]</sup>,即可确定 Mo 和 Si 所在杂阶。

通过编程计算, MoSi, 晶体的 Mo 处于丙种杂化第 3 阶, Si 处于第1 阶。利用式(4)和(5)计算各键键能。 计算过程中所需的 Mo 原子和 Si 原子的杂化状态参数 如表 2 所示。表中 σ 表示杂阶的顺序, R(l)表示单键半 距; l、m、n和l'、m'、n'分别表示原子杂化h态和t态中的 s、p、d 共价电子数和晶格电子数; τ、τ'是参数, 当 s 电子是共价电子时,  $\tau=\tau'=1$ , 当 s 电子是晶格电子 时, $\tau=\tau'=0$ ;  $C_{h\sigma}$ 与 $C_{t\sigma}$ 分别表示第 $\sigma$ 杂阶中h态和t态 的成分;  $n_{T\sigma}$ 、 $n_{l\sigma}$ 、 $n_{c\sigma}$ 分别表示第 $\sigma$ 杂阶的总价电子数、 晶格电子数和共价电子数。计算得到的 MoSi<sub>2</sub> 的价电 子结构和各键键能值列于表 3, MoSi2 晶体结合能计算 结果列于表4。MoSi2晶体理论结合能为1677.1kJ/mol, 与 MoSi<sub>2</sub> 结 슴 能 实 验值(1681.2 kJ/mol<sup>[6]</sup>)仅相差 0.24%,比用自洽赝势电

|      | -        |          |   |   |   |   |    |           |    |         | _             |               |               |               |               |
|------|----------|----------|---|---|---|---|----|-----------|----|---------|---------------|---------------|---------------|---------------|---------------|
| Atom | $\sigma$ | R(l)/nm  | l | т | п | τ | l' | <i>m'</i> | n' | $\tau'$ | $C_{h\sigma}$ | $C_{t\sigma}$ | $n_{T\sigma}$ | $n_{l\sigma}$ | $n_{c\sigma}$ |
| Мо   | C3       | 0.108 01 | 1 | 0 | 5 | 0 | 0  | 0         | 4  | 1       | 0.949 2       | 0.050 8       | 5.898 4       | 0.949 2       | 4.949 2       |

| 第17卷第2期 彭 可,等: MoSi <sub>2</sub> 价电子结构分析及结合能计算 |         |             |        |        |                 |   |              |                          |                     |                     | 219  |                  |                 |                          |                      |
|------------------------------------------------|---------|-------------|--------|--------|-----------------|---|--------------|--------------------------|---------------------|---------------------|------|------------------|-----------------|--------------------------|----------------------|
| Si                                             | 1       | 0.117 00    | 2      | 2      | 0               | 0 | 1            | 3                        | 0                   | 1                   | 1    | 0                | 4               | 2                        | 2                    |
| 表 3 MoSi                                       | 2价电     | 子结构         |        |        |                 |   |              |                          |                     |                     |      |                  |                 |                          |                      |
| Table 3Va                                      | lence e | lectron str | ucture | of MoS | Si <sub>2</sub> |   |              |                          |                     |                     |      |                  |                 |                          |                      |
| Bond                                           | 1       | Bonde       | d atom |        | Ia              | 1 |              | $n_{\alpha}$             |                     | $D(n_{a})$          | )/nm | $\overline{D}(n$ | $_{\alpha})/nm$ | $E_{\alpha}/(\mathbf{k}$ | $J \cdot mol^{-1}$ ) |
| А                                              |         | Мо          | -Si    |        | 32              | 2 |              | 0.258 88                 |                     | 0.26                | 0 92 | 0.2              | 60 22           | 26                       | 5.420                |
| В                                              |         | Si-         | -Si    |        | 16              | 6 |              | 0.334 66                 |                     | 0.26                | 3 22 | 0.2              | 62 52           | 21                       | .488                 |
| С                                              |         | Мо          | -Si    |        | 8               |   |              | 0.238 74                 |                     | 0.26                | 3 03 | 0.2              | 62 33           | 24                       | 4.169                |
| D                                              |         | Si-         | -Si    |        | 4               |   |              | 0.402 04                 |                     | 0.25                | 8 44 | 0.2              | 57 74           | 26                       | 5.293                |
| Е                                              |         | Si-         | -Si    |        | 16              | 6 |              | 0.037 06                 |                     | 0.32                | 0 56 | 0.3              | 19 86           | 1                        | .953                 |
| F                                              |         | Mo-         | -Mo    |        | 8               |   |              | 0.018 59                 |                     | 0.32                | 0 56 | 0.3              | 19 86           | 2                        | .278                 |
|                                                |         | β=0.0       | )60 nm |        |                 |   | $\Delta D$ = | $ D_a - \overline{D}_a $ | <sub>a</sub>  = 6.9 | 96×10 <sup>-2</sup> | nm   |                  |                 |                          |                      |

子理论计算的结果(E<sub>MoSin</sub>=1847.8 kJ/mol<sup>[6]</sup>)要好得多。

## 4 分析与讨论

#### 4.1 Si 原子偏移对共价电子的影响

余氏分子经验电子理论(EET)认为:共价电子对是 原子间结合的主要基础,原子间结合力的大小取决于 共价电子数。两原子之间结合键的共价电子数越多, 原子间结合力越大。由于 Si 原子从 u=c/3 的位置偏移 到 u=0.335 3c 的位置,使得沿 c 轴方向的分布的最近 邻 Si—Si 原子键(D键)键距最短。由表 3 可见,D 键上共价电子对数最多, $n_D=0.402$  04,其键能仅次于 A 键, $E_D=26.293$  kJ/mol。Harad 等<sup>[4]</sup>利用离散变分 Xa 原子簇方法计算出,由于 Si 原子的偏移,Si—Si 原子 结合键之间的电子密度增加,键能增加,该键的电子 密度最高,具有强的共价相互作用。用最大熵值法 (MEM)<sup>[14]</sup>可以得到相同的结论。

#### 4.2 MoSi<sub>2</sub>熔点与价电子结构的关系

| 表 4               | MoS <sub>12</sub> | 晶体结合   | 言能1  | オ昇 | <b>致</b> 据 | 给果        |  |
|-------------------|-------------------|--------|------|----|------------|-----------|--|
| <b>T</b> . 1. 1 . | 4 0               | 1. 1.4 | 1.4. | 1  |            | . C C . 1 |  |

MoSi<sub>2</sub>具有高熔点(2 030 ℃),在氧化性气氛下能 长期使用到 1 600 ℃而不致破坏。其高熔点的成因可 以从其价电子结构特点去加以分析。根据 EET 理论 <sup>[10]</sup>,晶体熔化只需使晶体中维持原子呈三维周期排列 的主干键络破坏。随着温度升高,固态晶体的原子热 振动振幅增加。当温度升至熔化温度时,原子热振动 振幅大到足以破坏近邻原子之间的结合键,即原子振 动动能达到主干键络的键能,主干键络结合被破坏, 晶体发生熔化。根据键能计算结果,在 MoSi<sub>2</sub>晶体中, 沿<331>位向分布的 A 键的键能最大, $E_A$ =26.420 kJ/mol,且有 32 个等同键数,是晶体中维持原子呈三维 周期排列的主干键络。要使 MoSi<sub>2</sub>相熔化,必须破坏 A 键,需要较高能量,因而宏观上就表现为高熔点。

#### 4.3 MoSi2 电阻率与价电子结构的关系

按 EET 理论, 晶格电子数目的增加意味着晶体导 电性的增加。由文献[9, 15], 纯 Mo 晶体的杂阶为 A3, Si 的杂阶为 4。在 Mo 与 Si 反应前, Mo 原子有 1.238 6 个晶格电子, 具有较好的导电性; Si 原子在 4 阶形 成 sp<sup>3</sup> 共价键, 由于较强的共价键, 其电子不易脱离

| Table 4         Calculation | data and result  | s of Cohesive E | Energy of MoSi <sub>2</sub> |                    |                           |                               |                    |  |
|-----------------------------|------------------|-----------------|-----------------------------|--------------------|---------------------------|-------------------------------|--------------------|--|
| Atom                        | $b_n$            |                 | f                           | f'                 | [ <i>n</i> <sub>l</sub> / | $\overline{D}(n_l)] \cdot f'$ | $\Delta n_c$       |  |
| Мо                          | 45.73            |                 | 2.048                       | 0.567              |                           | 0.194                         | -2.326             |  |
| Si                          | 32.89            |                 | 1.225                       | 1.000              |                           | 0.720                         | +1.163             |  |
| Atom                        | а                | b               | С                           | Ι                  | у                         | Y                             | $E_u^{cE}$         |  |
| Мо                          | 0.31 71          | 0.31 71 3.582 6 |                             | 145.17             | -                         | _                             | 658                |  |
| Si                          | _                | _               | _                           | _                  | 1.390                     | 48.74                         | 446                |  |
| E <sub>c</sub>              | $H_{f}^{\theta}$ |                 | $\overline{E}_{c}^{0}$      | $\overline{E}_{c}$ | $\overline{E}_{c}$        |                               | $\Delta E_c / E_c$ |  |
| 1 681.2                     | -131.2           |                 | 1 773.5                     | 1 677.1            | 1 677.1 4.1               |                               | 0.24%              |  |

1) Unit of *I*, *Y*,  $E_u^{cE}$ ,  $E_c$ ,  $H_f^{\theta}$ ,  $\overline{E}_c^0$ ,  $\overline{E}_c$  and  $\Delta E_c$  is kJ·mol<sup>-1</sup>

晶格的束缚而参与导电,仅有 0.336 个晶格电子。由 表 2 可知,Mo 与 Si 反应形成 MoSi<sub>2</sub>后,MoSi<sub>2</sub>晶体 Mo 原子处于丙种杂化第 3 阶,有 0.949 2 个晶格电子; 而 Si 原子处于第 1 阶,有 2 个晶格电子。虽然 Mo 原 子的晶格电子数有所减少,但 Si 原子的晶格电子数大 幅增加,MoSi<sub>2</sub>的平均晶格电子数为(*n*<sub>Mo</sub>+2*n*<sub>ISi</sub>)/3= (0.949 2+2×2)/3=1.649 7,其晶格电子数大于反应前 参与导电的晶格电子数。由此可以推断,MoSi<sub>2</sub>晶体 具有较好的导电性。实验结果表明,其室温电阻率为 21.5 μΩ·cm<sup>[16]</sup>。EET 理论计算与实验结果吻合。

#### 4.4 MoSi<sub>2</sub>价电子结构与脆性

尽管影响脆性的因素是多方面的,但某些合金(特别是金属间化合物)的脆性可与其价电子结构特点直接联系<sup>[17-18]</sup>。MoSi<sub>2</sub> 晶胞空间键络在(100)面上的投影如图 2 所示。由计算结果可知 MoSi<sub>2</sub> 的(100)面之间分布着最强键 A 键和较强键 B 键,分别有 32 和 16 个等同键数;而(100)面上各键共价电子数相对较少,虽然次强键 D 键和较强键 C 键分布其上,但等同键数分别为 4 和 8,且分布不对称,而其他键的键强又很弱。因此,C11<sub>b</sub>型晶体对称性差,MoSi<sub>2</sub> 晶体中价电子结构的分布不均匀,晶体中强弱键交错是导致晶体脆性的主要原因。在应力作用下容易因弱键断开而产生微裂纹,故造成 MoSi<sub>2</sub>具有较高的本征脆性。



图 2 MoSi<sub>2</sub> 晶胞各键在(100)面上的投影

**Fig.2** Projection draws of every bonds in  $MoSi_2$  cell on (100) Plane:  $\bigcirc$ —Mo(on 0a);  $\bigcirc$ —Mo(on 0.5a);  $\square$ —Si(on 0a);  $\blacksquare$ —Si(on 0.5a)

### 5 结论

 MoSi<sub>2</sub> 晶体 Mo 原子处于丙种杂化第 3 阶,其 中晶格电子为 0.949 2,共价电子为 4.949 2;而 Si 原 子处于第 1 阶,晶格电子为 2,共价电子为 2。理论结 合能为 1 677.1 kJ/mol,与实验值吻合。

2) 由于 Si 原子偏移,沿 *c* 轴方向的分布的最近 邻 Si—Si 原子键键距最短,共价电子数最多, *n*<sub>D</sub>= 0.402 04。

3) MoSi<sub>2</sub> 晶体良好的导电性主要来自于 Mo—Si 成键时,Si 的杂阶向较低的杂阶方向移动,大幅增加 了 MoSi<sub>2</sub>晶体中的晶格电子数,使 MoSi<sub>2</sub>中晶格电子 数比反应前 Mo,Si 原子的晶格电子数之和大。

4) MoSi2 晶体中价电子结构的分布不均匀,晶体 中强弱键交错是导致晶体脆性的主要原因。

#### REFERENCES

- Sharif A A, Misra A, Petrovic J J, et al. Alloying of MoSi<sub>2</sub> for improved mechanical properties[J]. Intermetallics, 2001, 9(10/11): 869–873.
- [2] Petrovic J J. Toughening strategies for MoSi<sub>2</sub>-based high temperature structural silicides[J]. Intermetallics, 2000, 8(9/11): 1175–1182.
- Zachariasen W. The crystal structure of MoSi<sub>2</sub> and WSi<sub>2</sub>[J]. Physik Chem, 1927, 128: 39–48.
- [4] Harada Y, Morinaga M, Saso D, et al. Refinement in crystal structure of MoSi<sub>2</sub>[J]. Intermetallics, 1998, 6(6): 523–527.
- [5] Tanaka K, Nawata K, Inui H, et al. Refinement of crystallographic parameters in refractory metal disilicides[J]. Mater Res Soc, 2001, 646: 4.
- [6] Bhattacharyya B K, Bylander D M, Leonard Kleinman. Comparison of fully relativistic energy bands and cohesive energies of MoSi<sub>2</sub> and WSi<sub>2</sub>[J]. Phys Rev B, 1985, 32(12): 7973–7978.
- [7] 周 飞. MoSi<sub>2</sub>和 WSi<sub>2</sub>相结构和性能的电子理论研究[J]. 硅酸盐学报, 2000(5): 462-464.
   ZHOU Fei. Study on the structure and properties for MoSi<sub>2</sub> and WSi<sub>2</sub> phases by electron theory[J]. Journal of the Chinese Ceramic Society, 2000(5): 462-464.
- [8] 徐万东,张瑞林,余瑞璜. 过渡金属化合物晶体结合能计算[J]. 中国科学 A, 1988, 18(3): 323-330.
  XU Wang-dong, ZHANG Rui-lin, YU Rui-huang. Calculation cohesive energy of transition metal compounds[J]. Science in China A, 1988, 18(3): 323-330.
- [9] 张瑞林. 固体与分子经验电子理论[M]. 吉林: 吉林科学技

术出版社, 1993.

ZHANG Rui-lin. Empirical Electron Theory of Solid and Molecules[M]. Jilin: Jilin Science and Technology Press, 1993.

- [10] Mattheiss L F. Calculated structural properties of CrSi<sub>2</sub>, MoSi<sub>2</sub>, and WSi<sub>2</sub>[J]. Physical Review B, 1992, 45(7): 3252–3259.
- [11] Kittel C. Solid State Physics [M]. New York: John Wiley and Sons Inc, 1976.
- [12] 陈舜麟, 顾 强, 王天民. Co<sub>3</sub>Ti 与 CoTi 的晶体结构与结合能的计算及其脆性[J]. 物理学报, 1995, 44(6): 936-942.
  CHEN Shun-lin, GU Qiang, WANG Tian-ming. Constants of the intermetallic compounds Co<sub>3</sub>Ti and CoTi and their brittleness [J]. Acta Physica Sinica, 1995, 44(6): 936-942.
- [13] 贾 堤,董治中,于申军,等. TiMe 合金的价电子结构分析 及结合能计算[J]. 稀有金属材料与工程, 1998, 27(3): 152–155. JIA Di, DONG Zhi-zhong, YU Shen-jun, et al. Calculation of cohesive energies and analysis of valence electronic structures of TiMe alloys[J]. Rare Metal Materials and Engineering, 1998, 27(3): 152–155.
- [14] Takata M. The influence of the completeness of the data set on the charge density obtained with the maximum-entropy method.

A Re-examination of the Electron-Density Distribution in Si[J]. Acta Cryst A, 1996, 52: 287–290.

 [15] 殷景华,郑 馥,李 雪,等. PtSi 的价电子结构[J]. 材料研 究学报, 2000, 6: 643-646.
 YIN Jin-hua, ZHENG Fu, LI Xue, et al. PtSi valence electronic

structures[J]. Chinese Journal of Materials Research, 2000, 6: 643–646.

- [16] Shackelford J F, Alexander W. CRC Materials Science and Engineering Handbook [M]. Boca Raton: CRC Press LLC, 2001.
- [17] 王沿东,孙祖庆,蔡 军,等. TiAl 金属间化合物价电子结构 即脆性[J]. 科学通报, 1991, 24: 1899-1902.
  WANG Yan-dong, SUN Zu-qing, CAI Jun, et al. Valence electron structure of TiAl and its brittleness[J]. Chin Sci Bull, 1991, 24: 1899-1902.
- [18] 杜晓东,丁厚福,宣天鹏. CrB 价电子结构对其性能的影响[J]. 中国有色金属学报, 2005, 12: 1980–1985.
  DU Xiao-dong, DING Hou-fu, XUAN Tian-peng. Effect of valence electron structure on property of CrB[J]. The Chinese Journal of Nonferrous Metals, 2005, 12: 1980–1985.

(编辑 何学锋)