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Abstract: In order to study the workability of Ti−6Al−4V alloy in the hot forming process for sheets and profiles, the stress—strain 
experimental data from isothermal hot tensile tests of flat specimens, in the temperature range of 923−1023 K and strain rate range of 
0.0005−0.05 s−1 were used to develop the constitutive equation. Arrhenius and Norton-Hoff constitutive models were proposed to 
characterize the tensile behavior. The fitting results suggest that both Arrhenius constitutive equation (material constants consider the 
compensation of strain) and modified Norton-Hoff one can predict flow stress of Ti−6Al−4V alloy under most experimental 
conditions. Further, the modified Norton-Hoff model is more accurate and precise than Arrhenius model. 
Key words: Ti−6Al−4V alloy; hot tensile behaviour; constitutive model; modelization; Arrhenius model; compensation of strain; 
modified Norton-Hoff model 
                                                                                                             
 
 
1 Introduction 
 

As a kind of α+β type titanium alloy, Ti−6Al−4V is 
attractive to material designers because of its high 
specific strength and stiffness, reasonable ductility and 
ability to withstand high temperatures and resistance to 
corrosion. Because of these properties this alloy is 
utilized in industrial and aeronautical applications [1−3]. 
However, Ti−6Al−4V alloy is difficult to fabricate by 
conventional machining processes owing to several 
inherent properties at room temperature. Hot forming is 
extensively used for manufacturing products of the alloy 
[4−6]. 

The constitutive model is important for simulating 
the hot forming processes because of its effective role in 
describing the flow behavior of the materials [7]. The 
reliability of simulation results is seriously influenced by 
the prediction accuracy of the constitutive equation [8,9] 
and the research about constitutive equation predicting 
elevated temperature flow behavior of Ti−6Al−4V alloy 
was carried out [10]. 

Arrhenius constitutive model is most widely used to 
describe the compression behavior of Ti−6Al−4V alloy 
and excellent results are obtained. MOHAMMAD et al 

[11] used Arrhenius model to predict the hot compression 
flow curves of Ti−6Al−4V alloy in α+β phase region at 
750–950 °C and constant strain rates of 0.001, 0.005 and 
0.01 s−1. CAI et al [12] used Arrhenius equation to 
describe isothermal hot compression test results in the 
temperature range of 800−1050 °C and strain rate of 
0.0005−1 s−1. 

VANDERHASTEN et al [13] explored the tensile 
behaviour of Ti−6Al−4V alloy in the strain rate range of 
0.0005−0.05 s−1 and temperature range of 298−1323 K 
and the Norton-Hoff constitutive model was chosen to fit 
all experimental results. The fitting results were excellent 
and satisfactory except for the temperature range of 
923−1023 K and strain rate range of 0.0005−0.05 s−1 
[14]. 

The objective of this study is to establish the 
relationship between the flow stress, strain, strain rate 
and temperature to predict high temperature tensile 
behaviour in hot forming process of Ti−6Al−4V alloy. 
Toward this end, isothermal hot tensile tests of flat 
specimens were conducted in temperature range of 
923−1023 K and strain rate range of 0.0005−0.05 s−1. 
The data of stress — strain experiments were then 
employed to derive both Arrhenius and modified 
Norton-Hoff constitutive equations. 
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To make the developed constitutive model more 
accuracy and reliable, the compensation of the strain for 
material constants of Arrhenius model was taken into 
account and the Norton-Hoff model was reasonably 
modified and improved. Finally, the validity of the 
developed constitutive models was examined over the 
entire experimental ranges by the comparison of the 
experimental and predicted results. Meanwhile, the 
comparison on fitting accuracy and applicability between 
Arrhenius and Norton–Hoff models was researched. 
 
2 Experimental 
 
2.1 Test material 

The chemical composition of Ti−6Al−4V alloy is 
listed in Table 1. The as-received alloy was annealed 
after hot and cold rolling into sheet of 1.5 mm thickness. 
The specimen was fabricated at rolling direction, keeping 
consistent with the longitude direction. Flat samples with 
a gauge length of 35 mm and width of 12.5 mm were cut 
by laser cutting. 
 
Table 1 Chemical composition of as-received Ti−6Al−4V alloy 
(mass fraction, %) 

Main component  Impurity 
Al V Ti  Fe C H O 

6.02 3.78 Bal.  0.08 0.007 0.0082 0.074

 
2.2 Testing equipment and procedure 

The tensile tests were performed on Zwick/Roell 
Z100 electric universal test machine equipped with a 
furnace with three independent heating zones. This 
furnace had a constant temperature zone of 30 cm and 
offered the possibility to control the atmosphere 
temperature with ±3 K precision. Then, the isothermal 
tensile tests were carried out in the strain rate range of 
0.0005–0.05 s–1 and temperature range of 923–1023 K. 
Prior to the hot uniaxial tensile test, the specimens were 
heated to the deformation temperature for 5 min to 
ensure a homogenous temperature distribution through 
the specimens. The tensile machine was programmed to 
operate at a constant strain rate. The experimental setup 
utilized an extensometer to measure the amount of 
specimen deformation in length via two long cylindrical 
contacts. The sample deformation was determined from 
the mobile extensometer displacement due to the friction 
between two cylindrical contacts. After each test, the 
engineering curves obtained from the uniaxial tensile 
tests were converted into true stress—true strain curves. 
The oxidation was avoided by the introduction of a 
nitrogen gas flow, which prevented the formation of 
oxygen enriched alloy layer (alpha case) on the specimen 
surface [15−17]. 

2.3 Results of tensile test 
The Ti−6Al−4V alloy shows excellent plasticity at 

high temperature [13]. The elongation of tensile 
specimens can exceed 100% and the necking does not 
occur when the experimental temperature is higher than 
923 K [13]. In this work, the elongation ranged from 0 to 
25% because of the measuring range of the extensometer. 
Considering the excellent testing equipment and 
procedure, it can be concluded that the deformation of 
the specimens is homogeneous under experimental 
conditions and the true stress—strain data are accurate. 

The true stress—strain curves resulting from the 
uniaxial tensile tests at temperatures of 923, 973 and 
1023 K and strain rates of 0.0005, 0.001, 0.005, 0.01 and 
0.05 s−1 are presented in Fig. 1. It is found that the  
 

 

Fig. 1 True stress—true strain curves of Ti−6Al−4V alloy 
under different experimental conditions: (a) 923 K; (b) 973 K; 
(c) 1023 K 
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Ti−6Al−4V alloy shows the features in hot environment, 
such as non-proportional, temperature coupling and 
strain rate relating. All the curves present softening under 
the condition of strain rate less than 0.005 s−1 and the 
work hardening is almost vanished at 1023 K and all 
strain rates. The work hardening becomes obvious under 
the condition of strains rate above 0.01 s−1 and 
temperature below 973 K. 

There are no sharp peaks in all curves, which 
suggests that the dynamic recrystallization does not 
happen and the softening results from the dynamic 
recovery. The flow stress and work hardening increase 
with strain rate increasing and temperature decreasing. 
On the contrary, the dynamic recovery and softening 
become more significant with temperature increasing and 
strain rate decreasing. The influence of the strain rate on 
the tensile strength is significant. 
 
3 Modelization of Arrhenius model 
 

The Arrhenius equation is widely employed to 
describe the relationship among the strain rate, flow 
stress and temperature, especially at elevated 
temperatures. And the effects of temperature and strain 
rate on the material deformation behavior can be 
expressed by Zener-Holloman parameter in an 
exponent-type equation [18−20]: 
 

exp[ /( )]Z Q RTε= &                           (1) 
1

1 exp[ /( )]nA Q RTε σ= −&  for ασ<0.8             (2) 
 

2 exp( )exp[ /( )]A Q RTε βσ= −&  for ασ>1.2         (3) 
 

2
3[sinh( )] exp[ /( )]nA Q RTε ασ= −&  for all σ        (4) 

 
where R is the universal gas constant (R=8.3145 
J/(mol·K)); T is the absolute temperature (K); Q is the 
activation energy of hot deformation (J/mol); σ is the 
flow stress (MPa); ε&  is the strain rate (s−1); A1, A2, A3, 
α(α=β/n1), n1, n2 and β are the temperature-independent 
material constants determined by experiment and vary 
with the change of the strain values [21,22], respectively. 
 
3.1 Determination of model constants 

The true stress and true strain data from the tensile 
tests under various processing conditions were used to 
evaluate the materials constants of the constitutive 
equations. The true plastic strain of 0.1 was taken as an 
example to introduce the solution procedures of the 
material constants. 

Taking nature logarithm of both sides of Eq. (2) and 
Eq. (3), the following equations can be obtained: 

1 1 1ln ln ln ln / ln |T
QA n n
RT

ε σ ε σ= + − ⇒ = ∂ ∂& &     (5) 

2ln ln = ln / |T
QA
RT

ε βσ β ε σ= + − ⇒ ∂ ∂& &          (6) 

The values of n1 and β can be obtained from the 
slope of the lines in the ln ε&—ln σ and ln ε&—σ plots, 
respectively (Fig. 2 and Fig. 3). It is apparent that the 
lines are almost parallel, and the slopes of the lines 
consequently vary in a very small range. The slight 
variation in the slope of the lines can be attributed to 
scattering in the experimental data points. The mean 
value of the slopes is taken as the value of n1 and β, 
which are 5.73385 and 0.022343 MPa−1. Therefore, the 
value of α (α=β/n1) is calculated to be 0.0039 MPa−1. 
 

 

Fig. 2 Relationship between lnε&  and ln σ 
 

 

Fig. 3 Linear relationship between ln ε& and σ 
 

Taking natural logarithm of both sides of Eq. (4), 
the following equations can be obtained: 
 

2 3ln ln[sinh( )] lnQn A
RT

ε ασ= − + ⇒&   
 

2 ln / ln[sinh( )] |Tn ε ασ= ∂ ∂&                    (7) 
 

3

2 2 2

lnlnln[sinh( )]
AQ

n n RT n
εασ = + − ⇒
&

  
 

2 ln[sinh( )] / (1/ ) |Q n R T εασ= ∂ ∂ &                 (8) 
 

The value of n2 can be obtained from the slope of 
the lines in the ln ε&—ln[sinh(ασ)] plot. Put α=0.0039 to 
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Eq. (7) and plot the relationship between ln ε&  and 
ln[sinh(ασ)] (Fig. 4). It is apparent that the slopes of the 
lines consequently vary in a very small range. The mean 
value of the slopes is taken as the value of n2 that is 
4.237923. 
 

 

Fig. 4 Relationship between lnε& and ln[sinh(ασ)] 
 

It can be seen from Eq. (8) and the relationship 
between ln[sinh(ασ)] and 1/T (Fig. 5) that the average 
value of the slope is 8.317264. So, at true plastic strain of 
0.1, the value of Q is found to be 293.05 kJ/mol. The 
value of ln A3 at a particular strain can be obtained by 
plotting the relationship between ln ε&  and ln[sinh(ασ)], 

as shown in Fig. 4. The interception value of the ln ε&—
ln[sinh(ασ)] curve equals lnA3—Q/(RT), the mean value 
of ln A3 at strain of 0.1 is found to be 29.80782. 
 

 
Fig. 5 Relationship between ln[sinh(ασ)] and 1/T 
 
3.2 Compensation of strain 

It is usually assumed that the influence of strain on 
the flow stress at evaluated temperature is insignificant 
and thereby would not be considered in Eq. (1) [21,22]. 
However, the effect of strain on the material constants is 
significant in the entire strain range (Fig. 6). Therefore, 
the compensation of strain for the material constants 
should be taken into account in order to derive the 

 

 
Fig. 6 Variation of α, n2, Q and ln A3 with true plastic strain: (a) α; (b) n2; (c) Q; (d) ln A3 
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constitutive equations to predict the flow stress more 
accurately. 

The influence of strain in the constitutive equation 
is incorporated by assuming that the material constants 
(α, n2, Q and ln A3) are polynomial function of strains 
[23,24]. In this work, the values of material constants (α, 
n2, Q and ln A3) of the constitutive equations were 
evaluated at different true plastic strains within the range 
of 0.02−0.2 and the interval of 0.02. The order of the 
polynomial varied from 1 to 9. As shown in Eq. (9), a 
third order polynomial was found to represent the 
influence of strain on material constants (α, Q and ln A3) 
with a good correlation and generalization (Fig. 6). A 
fourth order polynomial was found to represent the 
influence of strain on material constants (n2). The 
coefficients of the polynomial are given in Table 2. 

2 3
0 1 2 3

2 3 4
2 4 5 6 7 8

2 3
9 10 11 12

2 3
3 13 14 15 16

= + + +

= + + + +

= + + +

ln = + + +

B B B B

n B B B B B

Q B B B B

A B B B B

α ε ε ε

ε ε ε ε

ε ε ε

ε ε ε

⎧
⎪
⎪
⎨
⎪
⎪
⎩

                 (9) 

 
Table 2 Coefficients of polynomial for α, n, Q and ln A3 

α n2 Q ln A3 

B0=0.00359 B4=6.71387 B9=340.07842 B13=35.54295

B1=0.00539 B5=−49.72457 B10=−858.86046 B14=−106.8438

B2=−0.0333 B6=350.11612 B11=5028.67921 B15=642.31585

B3=0.10708 B7=−1133.9938 B12=−10596.489 B16=−1378.454

 B8=1301.7537   

 
Once the materials constants are evaluated, the flow 

stress at a particular strain can be predicted. The 
constitutive equation that relates flow stress and 
Zener-Holloman parameter can be written in the 
following form: 

1/ 2
2 2

3 3
1 1/ 2 /( ) ln ( / ) ( / ) 1n nZ A Z Aσ
α

⎧ ⎫⎪ ⎪⎡ ⎤= + +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
  (10) 

 
4 Modelization of Norton-Hoff model 
 

The Norton-Hoff law is a viscoplastic law with 4 
constants and is written in one dimension as presented in 
Eq. (11), where p1, p2, p3 and p4 are 4 material dependent 
constants. This law was developed by Norton and 
generalized to three dimensions by Hoff [25]. 
 

3 4
2 1exp{ } 3( 3 ) p pp pσ ε ε ε= − &                 (11) 

 
p1 has an effect in the large strain domain so that 

softening can be fitted; p2 has an effect on the level of the 
curve; p3 is used to model viscosity and is the exponent 

of the strain rate, regulating the distance among curves at 
different strain rates; and p4 is used to fit hardening. 
 

4.1 Modification of Norton-Hoff model 
It clearly appears that the part of exp(−p1ε) in 

Norton-Hoff equation represents the softening behavior 
and increasing the value of p1 is possible to model the 
softening. However, the influence of strain on the 
softening under specific experiment condition is also 
significant, which is easy to be found form the σ—ε 

curves (Fig. 1). 
It can be seen from σ—ε curves that the flow stress 

is hardening when ε is less than ε* and the softening 
occurs until ε becomes larger than ε*. ε* is defined as true 
plastic strain matched along with the tensile strength and 
ε* is determined by experiment and can be calculated 
through Eq.(12): 
 
ε*=εb−ε0.2                                  (12) 
 
where εb is true strain matched along with tensile 
strength and ε0.2 is true strain matched along with yield 
stress. εb and ε0.2 can be obtained from the true stress—
true strain curves. 

In order to make the Norton-Hoff model more 
accurate and reasonable, it is necessary to modify the 
Norton-Hoff equation. Considering the fact that the 
softening effect varies with the change of strain, the 
modified Norton-Hoff law can be expressed in following 
equation:  

3 4
*

0.2 2 1 *exp{ } 3( 3 ) p pp p ε εσ σ ε ε
ε
−

= + − &       (13) 
 
where σ0.2 is the yield stress and determined by the 
experiment. σ0.2 is assumed to be equal to the flow stress 
at which the stress—strain curve is no more linear. 

Comparing Eq. (13) with Eq. (11), it can be found 
that the modified Norton-Hoff model can modify the 
material constants of p1 and avoid the deviation coming 
from different σ0.2 values of specific experiment 
conditions. The material constants of the modified one 
are more reasonable and reliable. 
 
4.2 Determination of model constants 

The constants of the Norton-Hoff law were 
determined in σ— ε data by fitting Eq. (13) to the 
experimental curves. The evolution of constants p1 to p4 
as a function of strain rate and temperature was studied 
separately and some expressions relating these 
evolutions were determined. The influences of the strain 
rate and temperature were combined in one expression 
and these expressions were introduced in the main 
expression of the Norton-Hoff law, giving a new 
equation with a new series of constants only related to 
the material. 
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Fig. 7 Comparison of experimental σ—ε curves and fitting curves for tensile tests 
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Using the method described above and a fitting 
procedure on the results of tensile test carried out in 
temperature range of 923−1023 K and strain rate of 
0.0005−0.05 s−1, the constitutive equation was 
established (Eq. 14), where A1, …, A14 are material 
constants. The values of different A constants were 
determined and the results are listed in Table 3. 

 

3 4
*

0,2 2 1 *

1 0 1 2 3

2 4 5 6

3 7 8 9 10

4 11 12 13 14

exp( ) 3( 3 )

ln
ln
ln ln

ln exp

p pp p

p A A T A A
p A A T A
p A A A A T
p A A T A A

ε εσ σ ε ε
ε

ε ε
ε

ε ε
ε ε

−
= + −

= + + +
= + +
= + + +
= + + +

&

& &
&

& &
& &

     (14) 

 
Table 3 Values of material constants for Norton-Hoff model 
law 

p1 p2 p3 p4 

A0=10.225 A4=557.748 A7=−10.595 A11=10.237

A1=−0.008 A5=−0.457 A8=−5.424 A12=−0.004

A2=−16.967 A6=16.388 A9=0.048 A13=0.068 

A3=0.272  A10=1.545 A14=−4.833

 
5 Verification and comparison 
 

The Arrhenius constitutive equation (considering 
the compensation of strain) and modified Norton-Hoff 
constitutive equation were verified by comparing the 
experimental data and predicted one (Fig. 7). It can be 
observed that the Arrhenius predicted data are 
satisfactory under all conditions except for two 
processing conditions (1023 K, 0.0005 s−1; 923 K, 0.05 
s−1), which reflects excellent prediction capabilities of 
the developed constitutive equation. Meanwhile, the 
modified Norton-Hoff predicted data are relatively 
precise under all conditions except for the condition of 
1023 K and 0.0005 s−1. Additionally, it is obvious that 
under processing condition of 1023 K and 0.0005 s−1, 
both Norton-Hoff and Arrhenius constitutive equation 
cannot fit well to the experimental curve. 

From Fig. 7, it is easy to draw the following 
conclusions. Firstly, both the Norton-Hoff model and 
Arrhenius one are satisfactory for fitting the 
experimental data under most conditions. Secondly, the 
modified Norton-Hoff model prediction is more accurate 
and precise than the Arrhenius one and the best curve 
fitted is Norton-Hoff. 

It can be found from the modelization process that 
the determination of Arrhenius model constants is much 
more complex and difficult than that of the Norton-Hoff. 
Firstly, the determination of the Arrhenius material 
coefficient needs more steps of curve fitting than that of 
Norton-Hoff and each curve fitting process has to bring 

deviation to the final results. Secondly, the Arrhenius 
determination steps make the average values for α, β, n2, 
Q and A3 under the condition of different strain rates, 
which ignores the influence of the strain rate on material 
constants and leads to more errors compared with the 
Norton-Hoff one. 
 
6 Conclusions 
 

1) The flow stress and work hardening increase with 
strain rate increasing and temperature decreasing. 
Dynamic recovery and softening become more 
significant with strain rate decreasing and temperature 
increasing. Dynamic recrystallization does not happen 
and the influence of the strain rate on the tensile strength 
is significant. 

2) For the Arrhenius constitutive model, strain 
shows significant influence on the material constants and 
polynomials equation is found to be suitable to represent 
the influence. The Arrhenius model considering the 
compensation of strain can well predict the flow stress 
under all experimental conditions except for the 
conditions of 923 K, 0.05 s−1 and 1023 K, 0.0005 s−1. 

3) The fitting result of modified Norton-Hoff model 
is rather satisfactory under all experimental conditions 
except for the condition of 1023 K and 0.0005 s−1. The 
predicted flow stress value can track the experimental 
data excellently under most experimental conditions. 

4) The prediction result of the modified 
Norton-Hoff model is more accurate and precise than 
that of Arrhenius one. The determination of the 
Arrhenius material coefficient needs lots of linear fit 
steps and has to make average value for material 
constants at different strain rates, which will bring 
deviations to fitting results. 
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Ti−6Al−4V 合金高温拉伸变形 Norton-Hoff 与 
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摘  要：为研究 Ti−6Al−4V 合金在热成形过程中的力学性能，在 923~1023 K 温度和 0.0005~0.05 s−1应变速率范

围内，进行片状试样的恒温高温拉伸试验，采集应力—应变试验数据并建立材料的本构模型。将 Arrhenius 和

Norton-Hoff 本构模型用于表征合金的高温拉伸行为。拟合结果显示，考虑材料常数应变补偿的 Arrhenius 模型和

改进的 Norton-Hoff 模型均可以准确地预测 Ti−6Al−4V 合金多数条件下的流变应力，由拟合结果比较可知改进的

Norton-Hoff 模型比 Arrhenius 模型更精确。 

关键词：Ti−6Al−4V 合金；高温拉伸行为；本构模型；模型化；Arrhenius 模型；应变补偿；Norton-Hoff 改进         

模型 
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