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Abstract: An analytical approach for predicting the critical blank holding force (BHF) was presented. Using energy method, the 
analysis provides the circumferential stress and the equivalent strain as functions of radius under the plane strain and the equivalent 
strain is inversely proportional to the radius respectively. The maximum relative errors of the circumferential stress and the 
equivalent strain are 22.3% and 35.9% respectively under the two conditions for some dimensions of sheet and die. In addition, the 
relationship between BHF and wrinkle number was obtained under the assumption that wrinkle shape is expressed by power function. 
The critical BHF under plane strain was analyzed for the wrinkle shapes when the power is less than, equal to or greater than 1. The 
effects of wrinkle shapes on the critical BHF are also presented.  
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1 Introduction 
 

Wrinkling is an instability phenomenon that may 
occur in sheet metal forming. The analysis of wrinkling 
is the basis of the control of BHF. 

Wrinkling instability is usually analyzed using 
bifurcation theory. HILL’s bifurcation and uniqueness 
theory initiated the general analytical study of plastic 
wrinkling [1]. HUTCHINSON [2] developed the 
bifurcation theory for structures in the plastic range. 
Based on this work, HUTCHINSON and NEALE [3] 
later studied the buckling behavior of doubly-curved 
sheet metal. However, BHF is not considered in the 
research. TRIANTAFYLLIDIS and NEEDLEMAN [4] 
studied this problem and analyzed the effect of blank 
holder stiffness on the critical buckling stress and wave 
number. The energy method is another approach. 
SENIOR [5] presented a one dimensional model and 
gave a wrinkling criterion using energy method, 
considering sheet thickness to be constant. Assumptions 
are made to determine the curve of the critical BHF vs 
punch stroke. YU and JOHNSON [6] used a 
two-dimensional buckling model of an elastic-plastic 

annular plate to determine the critical conditions and also 
quantitatively investigated the effects of a blank holder 
on the critical buckling stress and wave number. LIN et 
al [7] derived models of critical fracture and critical 
wrinkling respectively and discussed the formability of 
aluminium alloy sheet in the case of variable BHF. GAO 
et al [8] gave a formula of the critical BHF required to 
avoid wrinkling in the flange region accounting for 
friction. ZHAO [9] discussed the effect of friction 
coefficient and anisotropy coefficients on the critical 
BHF. WANG [10] investigated BHF through the 
theoretical analysis and experiment. Based on the work 
of WANG [10], LUO [11] conducted the analysis to 
obtain the safe region of BHF which is between the 
critical rupturing curve and the critical wrinkling curve. 
YAGAMI et al [12] investigated the effect of blank 
holder motion on deep drawability and showed that 
wrinkle elimination can be successful if wrinkles are 
within the allowable height range. WANG and CAO [13] 
studied the critical wrinkling condition of a square cup 
forming under the constant BHF assumption. 
AGRAWAL et al [14] derived a formula of the critical 
BHF required to avoid wrinkling of the flange in 
axisymmetric deep drawing process, considering the  
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influence of thickness. SIVASANKARAN et al [15] used 
an artificial neural network model for predicting and 
avoiding surface failures such as wrinkling of sheet 
metals. 

To simplify the calculation of strain energy, many 
researchers have made the assumption that equivalent 
strain is inversely proportional to radial coordinate by 
using energy method. The strain energy refers to the 
energy due to bending deformation and circumferential 
stress when wrinkling happens. However, such 
calculated critical BHF is not in consistence with 
experiment. In order to calculate the BHF accurately, the 
assumption of plane strain is utilized to analyze the stress 
and strain. The critical condition for wrinkling is given 
and the critical BHF is calculated. Since wrinkle shape 
has a great influence on the critical BHF, the curves of 
critical BHF vs punch stroke are calculated for different 
assumed wrinkling models. 
 
2 Analysis of strain and stress in flange 
 
2.1 Plane strain assumption 

According to the characteristics of the axisymmetric 
deep drawing, the following assumptions are made. 

1) Plane deformation in the flange, i.e., the strain, is 
zero in the thickness direction. It can be expressed as 
εz=0. 

2) The equivalent stress and equivalent strain satisfy 
the relationship σ=Bεn, where B and n are strength 
coefficient and hardening exponent, respectively. 

3) The frictions between blank holder and sheet, and 
between die and sheet are neglected.  

4) Bending and reverse bending are not considered. 
namely, the sheet bending deformation on the corner of 
the punch and the die is neglected. 

Plane strain assumption has been used to analyze 
the flange deformation in axisymmetric deep drawing. 
Differential equilibrium equation can be expressed as 
 

ρ
ρσσσ ρθρ

d)(d −=                           (1) 

 
where ρσ  and θσ  denote the normal stress in the 
radial direction and  the normal stress in the 
circumferential direction respectively at r=ρ; dσρ 
represents the radial stress increment when the radius 
increases dρ at the time t. 

According to the plane strain assumption and the 
definition of equivalent stress, the relationship between 
σρ and σθ can be obtained as 
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where r is the anisotropy coefficient. 

The equivalent strain can be derived as 
 

0
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where ρ0 is the initial location of the material particle at 
the time t=0; ρ is the location of same particle at the time 
t. 

Substituting Eq. (2) into Eq. (1) and considering the 
strain hardening rule which is expressed by σ=Bεn, we 
can obtain Eq. (4): 
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rrBB . Substituting the boundary 

condition into Eq. (4), we can obtain the radial stress σρ, 
which is equal to )π/( 0whRQμ  at ρ=Rw, where Q is the 
BHF, h0 is the initial thickness of the sheet, μ is the 
friction coefficient, and Rw is the radius of material 
particle at the outer edge of the flange at the time t. The 
initial location of the material particle is R0, i.e., the 
radius of the sheet metal. The stress of material particle 
at any position ρ, where ],[ w0 Rr∈ρ , and r0, the inner 
radius of the flange, which is the inner radius of the die 
when the die edge radius is neglected. Then σρ and σθ in 
the flange can be calculated respectively as 
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where 22

w
2

0 ρRRρ +−= ; x is the variable of 
integration, ],[ wRx ρ∈ ; x0 is the initial location when 
the time t=0; x is the location when the time is t. So x0 

can be expressed as 22
w

2
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2.2 Inversely proportional assumption 

It is difficult to obtain the primitive function of the 
integral function from Eqs. (5) and (6). So in order to 
simplify the calculations, some researchers assumed that 
the equivalent strain is inversely proportional to the 
radial coordinates. When μ=0, using the equilibrium 
equations, the Tresca yield criterion and boundary 
conditions, the stress in the flange can be obtained as 
[7−11] 
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Figure 1 shows the relationship between the ratio of 

circumferential stress and intensity coefficient, σθ/B, and 
the ratio of radial coordinate and sheet initial radius, ρ/R0. 
Figure 2 demonstrates relation between the equivalent 
strain, ε, and the ratio of radial coordinate and sheet 
initial radius, ρ/R0, under the two different assumptions 
when r=1, Rw/R0=0.85, n=0.19, r0=50 mm, R0=110 mm. 
 

 
Fig. 1 Ratio of circumferential stress and intensity coefficients 
under two assumptions 
 

 
Fig. 2 Equivalent strain under two assumptions 
 

Figures 1 and 2 show that the circumferential 
stresses are different under the two different assumptions, 
so are the equivalent strains. The maximum relative error 
of the circumferential stress is 22.3%, and that of the 
equivalent strain is greater, which is 35.9%. The 
circumferential stress and the equivalent strain are 
needed in order to calculate the BHF when the energy 
method is used. Hence, the blank holder forces 
calculated according to the circumferential stress and the 
equivalent strain under two assumptions are different. 

It should be noted that the assumption that the 
equivalent strain is inversely proportional to the radius is 

not in accordance with the constant volume condition. 
Thus, the stress solution obtained in this way is not 
accurate. It is also necessary to adopt the later 
assumption in calculating the BHF, predicting the 
wrinkling and comparing the results obtained by using 
the two assumptions. 
 
3 Calculation of strain energy 
 
3.1 Basic equations 

Let us consider a single wrinkle. According to the 
well-known energy method, the energy Uθ due to the 
compressive circumferential stress can be written as 
 

QUUU += wθ  
 
where Uθ is strain energy due to circumferential 
stretching of sheet after wrinkling; Uw is strain energy 
due to bending stress during wrinkling; UQ is the work 
done by the blank holder force. 

For a micro-ring with inner radius ρ and outer 
radius ρ+dρ, its cross section area is hdρ. There are a 
number of wrinkles. For a single wrinkle of the 
micro-ring, let l be the original circumferential length, 
and S ′  be the increment of circumferential length when 
the wrinkling happens. Then the strain energy released 
by the circumferential stress can be obtained. 
 

w
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where 
  

 0  0
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l l
S s x′ = −∫ ∫ , ds and dx represent the micro 

circumferential lengths of micro-ring of the single 
wrinkle after wrinkling and before wrinkling respectively. 
When the wrinkle magnitude is very small, 'S can be 
expressed by  

   2 2
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Deflection at any point of the single wrinkle is 

generally assumed to be [7] 

0 ( ) ( )y y f fφ ρφ ρ=  

where y0 is wrinkle amplitude; φ is the angle of arbitrary 
point in the single wrinkle; y is the deflection of the point 
at any position (ρ, φ) in the flange; )(ρρf  and )(φφf  
are the functions of ρ and φ respectively, which are 
dimensionless and mutually independent. 

Substituting ρφ=x  into Eq. (11), we can get 
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where φ0 is the angle of the arc corresponding to the 
single wrinkle. When ρ is an arbitrary value and φ=0 or 
φ=φ0, y=0; when wR=ρ  and φ=φ0/2, y=y0. 

The bending energy that is required to make the 
wrinkle formed for a single wrinkle can be calculated by 
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where dI is the moment of inertia of cross-sectional area 
of the micro-ring. The inner radius of the ring is ρ. The 
thickness and the width of the cross section are h and dρ 
respectively. And dI can be expressed by 
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When the swift strain hardening rule is used, we 
have  
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where D is the plastic tangential modulus. 
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Substituting the two equations into Eq. (10) and Eq. 

(13) respectively, we obtain  
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In the following analysis, Uθ and Uw are calculated 
based on the two different assumptions.  
 
3.2 Inversely proportional assumption 

Under the condition that the equivalent strain is 
inversely proportional to the radial coordinate, 

substituting the circumferential stress calculated from  
Eq. (9) into Eq. (14) and let 
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The energy released by the circumferential stress 
θσ  for a single wrinkle can be written as  
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Because the equivalent strain is inversely 
proportional to the radial coordinate, we have 
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Substituting Eq. (17) into Eq. (15), we can obtain 
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After the integration, we obtain 
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Equations (16) and Eq. (18) are obtained under the 
condition that the equivalent strain is inversely 
proportional to the radial coordinate. This condition is 
contradictory with that of constant volume which is the 
basic assumption commonly used in the plastic forming. 
 
3.3 Plane strain assumption 

Under the condition of plane strain and constant 
volume, θU  and UQ are calculated. 

In order to simplify and compare the results of the 
two kinds of calculations, let μ=0. Substituting Eq. (6) 
into Eq. (14), we can get 
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where )( 0φθg  is inversely proportional to φ0 and is 
calculated by 
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Equation (19) shows that θU  is the function of Rw 

and contains many integral terms. Therefore, the 
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numerical method is generally required to calculate the 
results. 

Using the definition of the equivalent strain and the 
plane strain assumption, the plastic tangential modulus D 
can be obtained as  

1
22

w
2
0ln

21
)1(2

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +−
⋅

+
+

=

n
RR

r
rnBD

ρ
ρ

      ( 2 0 ) 

Substituting Eq. (20) into Eq. (15), we can obtain  
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where gw(φ0) is inversely proportional to 3
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4 Calculation of critical BHF 
 
4.1 BHF under wrinkling condition 

From the above analysis, we can get the relationship 
between the BHF and other parameters by using the 
energy method based on the latter assumption of the 
wrinkling model. Let N be the number of the wrinkles, Q 
be the BHF, then 0π2 φ=N . The work done by the BHF 
for each wrinkle is obtained.  

0 0
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yQU y Q
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According to the principle of energy conservation, 

we can obtain 
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When the friction is not considered in Eq. (22), 

since Q is not included in θU , it can be obtained 
directly. 

When friction is considered, the energy released by 
the circumferential stress consists of two parts: θU  and 

μ
θU , where θU  is the value calculated by Eq. (19)  

without considering the friction and μ
θU  is the energy 

consumption caused by friction force. Substituting the 
term that contains μ  in Eq. (6) into Eq. (10), we can 
obtain 
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can be expressed as 
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  (24) 
When the assumption that equivalent strain is 

inversely proportional to the radial coordinate is used, 
substituting Eq. (16) and Eq. (18) into Eq. (22) and 
considering friction, Eq. (24) becomes 
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When forming conditions, such as forming speed 

and temperature, are not considered, Eq. (24) and Eq. (25) 
give the relationship among the BHF and material 
properties parameters, geometric parameters of the sheet 
metal, punch stroke and wrinkle model parameters. The 
BHF changes only with the wrinkling model parameters 
when the forming conditions and other above parameters 
remain unchanged. 
 
4.2 Critical BHF 

The BHF is the function of the wrinkling model 
parameters when other parameters have been given. The 
wrinkle amplitude is generally allowed to be set a certain 
magnitude under the critical wrinkling condition,  and 
the BHF is only the function of the wrinkle number N or 
the corresponding central angle of a single wrinkle, φ0. 
The critical BHF can be obtained by substituting φ0 into 
Eq. (24) and Eq. (25). The magnitude of φ0 under the 
critical BHF condition can be obtained from Eq. (24) and 
Eq. (25) by using 0/ 0Q φ∂ ∂ = . 

Figure 3 shows the relation of Q/y0 vs the number of 
wrinkles when Rw/R0=0.85 and μ=0.1, where Q is the 
critical BHF. When the number of wrinkles is a certain 
value, the BHF reaches the maximum which is the 
critical BHF. 
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Fig. 3 Q/y0 vs number (N) of wrinkles (Rw/R0=0.85, μ=0.1) 
 

In the actual drawing process, the critical BHF is 
the function of the punch stroke in the case that other 
parameters remain unchanged. The relationship between 
Q/y0 and Rw/R0 is shown in Fig. 4. Rw denotes the 
position of outer edge of the flange that changes with the 
punch stroke. The calculated critical BHF under the 
plane strain assumption is greater than that when the 
equivalent strain is inversely proportional to the radial 
coordinate. The critical blank holder forces are both zero 
at the start and the end positions in the drawing process, 
while the BHF reaches the maximum at a certain position 
during the process. 
 

 
Fig. 4 Curves of critical BHF vs stroke (μ=0) 
 

Generally, wrinkling can always be eliminated in 
the deep drawing process when the applied BHF is not 
less than the critical BHF. 
 
5 Influence of wrinkle model on critical BHF 
 

As stated in subsection 3.1, the wrinkle model in 
flange is generally assumed as 

0 ( ) ( )y y f fφ ρφ ρ=  

Referring to the function )(ρρf  used in Eq. (13), 
it can be revised as 
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where m is a parameter greater than zero. 
Figure 5 demonstrates the shapes of the wrinkle 

curve along radial direction with different m. When value 
of m changes, the shapes of the wrinkles are different, 
while the largest height of the wrinkles is the same. The 
BHF is mainly applied to the outer edge of the flange 
where the thickness of the sheet is the greatest after 
drawing process. The shapes of the wrinkles are convex 
when m<1, while they are straight or concave when m=1 
or m>1 respectively. Generally, the wrinkle shapes are in 
accordance with experimental result when m<1. Thus the 
value of m corresponding to the possible shapes of 
wrinkles in the flange is not greater than 1.0. 
 

 
Fig. 5 Shapes of wrinkles along radial direction 
 

Substituting 2/)]/π2cos(1[)( 0φφφφ −=f and )(ρρf  
for different m into Eq. (10) and Eq. (13), we can get 
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The strain energy θU  and wU  can be obtained 
by substituting Eq. (9) and Eq. (20) into Eq. (26) and  
Eq. (27) respectively. The critical BHF can be obtained 
by Eq. (22). 

Figure 6 shows the critical BHF curves 
corresponding to different m. The results show that the 
shape of the wrinkle has a great effect on the calculated 
results of the critical BHF. The greater the value of m is, 
the smaller the critical BHF obtained is. 

Under the experimental conditions, there is no 
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uniform standard to determine the onset of wrinkling, so 
it is difficult to accurately obtain the critical BHF. 
Therefore, in many cases, the critical BHF is obtained by 
analytical or calculation method. Many researchers 
[7,9−11] selected m=0.5 to calculate the critical BHF 
which is generally greater than the experimental results. 
The wrinkling occurs in the outer edge of flange at first, 
and then in the inner range. Thus, the value of m 
corresponding to the shapes of wrinkles in the flange is 
possibly not greater than 1. To take a smaller magnitude 
of m is safe for calculating the critical BHF. The allowed 
amplitude y0 and the actual shape of the wrinkles should 
be considered to calculate the critical BHF accurately. 
 

 
Fig. 6 Relationship between relative critical BHF and shapes of 
wrinkles (plane strain and μ=0) 
 

In order to reduce the critical BHF in axisymmetric 
deep drawing process, we can control the wrinkle shapes 
corresponding to a larger m shown in Fig. 4, in which the 
critical BHF may be smaller by using a new deep 
drawing process with radial segmental blank holder, 
which was proposed by QIN et al [16]. By using this 
method, the effect of the blank holder can be enhanced.  
 
6 Conclusions 
 

1) The distributions of stress and strain in flange 
region along the radial direction for axisymmetric deep 
drawing were analyzed under the plane strain and the 
condition that the equivalent strain is inversely 
proportional to the radial coordinate respectively. The 
maximum relative errors of the circumferential stress and 
the equivalent strain are 22.3% and 35.9% respectively 
under the two conditions for some dimensions of sheet 
and die. The critical blank holding forces are also 
different. 

2) The relationship between BHF and wrinkle 
number was obtained when wrinkling shape was 
expressed in terms of power function. The critical BHF 
under the plane strain was analyzed for the wrinkle 

shapes when m<1, m=1 and m>1, respectively. The 
critical BHF decreases as m increases. 

3) The assumed wrinkling shapes have great 
influences on the critical BHF. Therefore, radial 
segmental blank holder technique can be utilized to 
control the wrinkle shapes to improve the formability. 
 
References 
 
[1] HILL R. A general theory of uniqueness and stability in 

elastic/plastic solids [J]. Journal of the Mechanics and Physics of 
Solids, 1958, 6: 236−249. 

[2] HUTCHINSON J W. Plastic buckling [J]. Advances in Applied 
Mechanics, 1974, 14: 67−144. 

[3] HUTCHINSON J W, NEALE K W. Wrinkling of curved thin sheet 
metal [M]. Paris: Plastic Instability Presses Ponts et Chaussées, 1985: 
71−78. 

[4] TRIANTAFYLLIDIS N, NEEDLEMAN A. An analysis of wrinkling 
in the swift cup test [J]. Journal of Engg. Materials and Technology, 
1980, 102: 241−248. 

[5] SENIOR B W. Flange wrinkling in deep-drawing operations [J]. 
Journal of the Mechanics and Physics of Solids, 1956, 48: 235−246. 

[6] YU T X, JOHNSON W. The buckling of annular plates in relation to 
deep drawing process [J]. International Journal of Mechanical 
Sciences, 1982, 24(3): 175−188. 

[7] LIN Zhong-qin, YU Zhong-qi, SUN Cheng-zhi, CHEN Guan-long. 
Formability window of aluminium alloy sheet at variable 
blank-holder force [J]. The Chinese Journal of Nonferrous Metals, 
2005, 15(8): 1162−1166. (in Chinese) 

[8] GAO K Q, DU S, HU S G. The minimum wrinkles blank-holder 
force for axial symmetry workpiece in deep-drawing [J]. Journal of 
Plasticity Engineering, 1997, 4(4): 30−37. 

[9] ZHAO Jun. Study on intelligent control technology for the deep 
drawing of an axi-symmetric shell part [D]. Harbin: Harbin Institute 
of Technology, 1997. (in Chinese) 

[10] WANG Dong-zhe. Research on blank holder force theory and 
experiment in sheet metal deep drawing [D]. Shanghai: Shanghai 
Jiao Tong University, 2001. (in Chinese) 

[11] LUO Ya-jun. Research on blank holder force theory and numerical 
simulation in sheet metal deep drawing [D]. Shanghai: Shanghai Jiao 
Tong University, 2003. (in Chinese) 

[12] YAGAMI T, MANABE K, YAMAUCHI Y. Effect of alternating 
blank holder motion of drawing and wrinkle elimination on 
deep-drawability [J]. Journal of Materials Processing Technology, 
2007, 187−188: 187−191. 

[13] WANG X, CAO J. An analytical prediction of flange wrinkling in 
sheet metal forming [J]. Journal of Manufacturing Processes, 2000, 
2(2): 100−107. 

[14] AGRAWAL A, REDDY N V, DIXIT P M. Determination of optimum 
process parameters for wrinkle free products in deep drawing process 
[J]. Journal of Materials Processing Technology, 2007, 191: 51−54. 

[15] SIVASANKARAN S, NARAYANASAMY R, JEYAPAUL R, 
LOGANATHAN C. Modelling of wrinkling in deep drawing of 
different grades of annealed commercially pure aluminium sheets 
when drawn through a conical die using artificial neural network [J]. 
Materials & Design, 2009, 30(8): 3193−3205. 

[16] QIN S J, HUANG X Z, WANG J. Research on axisymmetrical deep 
drawing process based on radial double blank segmental 
blank-holder technique [J]. Chinese Journal of Mechanical 
Engineering, 2011, 22(14): 1741−1744. 



QIN Si-ji, et al/Trans. Nonferrous Met. Soc. China 22(2012) s239−s246 s246 
 
 

轴对称拉深成形法兰变形区临界压边力 
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摘  要：提出一种预测临界压边力的数值计算方法。对轴对称拉深成形，使用能量法分别在平面应变条件和等效

应变与位置成反比关系条件下，给出法兰变形区的周向应力和等效应变与径向坐标的关系。结果表明，对于定尺

寸的板坯和模具，两种假设条件下的周向应力和等效应变的最大相对误差分别为 22.3%和 35.9%。此外，在皱纹

形状以指数函数表示的条件下，得到了压边力与皱纹数量的关系。在平面应变假设条件下，对指数分别小于 1、

等于 1 和大于 1 的不同皱纹形状计算了临界压边力。结果表明，皱纹的假设形状对临界压边力的计算值有较大影

响。 

关键词：板材成形；拉深；起皱；临界压边力；皱纹模型；皱纹数量 
(Edited by LI Xiang-qun) 

 
 


