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Abstract: An explicit model controlled by a linear equations set was developed. This model was directly solved by the complete
pivot GAUSSIAN elimination method without any iteration. In addition, crystallographic-system based solving procedure was
proposed to reduce the additional calculation caused by grain rotation. By establishing crystal plasticity finite element model
(CPFEM), the model was verified by comparing the predicted texture to the experimental results. Then, the model was applied to
predict textures under different deformation states achieved by adjusting the ratio (k) of the loading velocities in Z and Y directions.
The results show that the model is reliable in texture prediction (good agreement with the experiments in compression, tension,
simple shear and plane—strain compression) and much more efficient (more than 100 times) than the implicit model; with the
increasing of k, the strong texture progresses from +35° to normal direction to fiber texture in the {111} plane and enhances in
intensity; the texture intensity drops dramatically when the strain rate increases from 0.1 s ' to 100 s ', while drops slowly when the
strain rate increases from 100 s ' to 7x10* s™!, which indicates the computational stability of the model for simulation of ultra-high

strain rate deformation.
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1 Introduction

Texture evolution takes place during plastic
deformation of metals, which in turn results in
anisotropic mechanical properties of the deformed part
[1]. Additionally, texture evolution varies with different
deformation states sensitively. So, texture prediction is
an effective way for deformation design and performance
control. Crystal plasticity model is widely known and
utilized for texture prediction in metal deformation
process. However, the major drawback of crystal
plasticity models lies in computational issue [2], i.e.
inefficient and unstable solution. The widely used
Newton—Raphson (N—R) iteration approach [3-5] is
computationally stable and accurate but inefficient due to
massive iterations existing both at the local level to
update the stress and globally to enforce equilibrium [6].
As to the implicit algorithms, rate—tangent method [7]
and Euler forward method [8] are typical representatives
of explicit algorithms, which promote the computational
efficiency remarkably [6]. However, they were very rigid

needing very small step length [8].

On the other hand, grains aggregate should be taken
into account for prediction of texture evolution. Grains
interaction during deformation process is a challenging
issue in crystal plasticity modeling. To the problem of no
grain interaction considered in the Taylor model [9], van
HOUTTE et al [10] proposed a bicrystal model, so called
LAMEL model, which calculated two crystals at the
same time so that to consider grain interactions. The
model was improved by van HOUTTE et al [11] from
LAMEL model to ALAMEL model by considering two
neighboring domains, the subdivision of a grain.
Subsequently, MAHESH [12] proposed a binary-tree
based model to maintain traction continuity across grain
interface within an aggregate by dividing the aggregate
to subaggregates and then subdividing until the smallest
sub-divisions contain only single grains. Similarly,
KUMAR et al [13] proposed a “stack” model based on
the ALAMEL model to account for intra interactions by
means of an arbitrary number N of co-deforming
domains. In addition, self-consistent models [14—16]
consider grain interaction by allowing constraints on
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shearing directions of a grain but not applying full
constraints. Also, crystal plasticity finite element model
(CPFEM) [17] considers grain interactions by the nature
that the nodes in finite element model are constrained by
each other.

In this work, Taylor series expansion was applied to
recast the high-order nonlinear equation accounting for

rate dependent shear strain rate into a linear equations set.

Then, an incremental explicit model was deduced with
the linear equations set as the control equation. This
model was solved directly by the complete pivot
Gaussian elimination method, which avoids iterations in
the implicit model and overcomes the shortcomings
caused by the approximation adopted in aforementioned
explicit models. By developing user subroutine VUMAT,
this model was embedded in the commercial software
ABAQUS/Explicit. The model was verified on texture
prediction in axial compression, tension, simple shear
and plane—strain compression through a CPFEM. Then,
the model was applied to investigate texture evolution
under varying deformation states and strain rates.

2 Crystal plasticity finite element modeling

2.1 Constitutive relation
The elastic constitutive relation for the stress in
each grain is taken as

T'=R:E’ (1)

where E” E(l/2)((F*)TF*— 1) is an elastic strain
measure, R is a fourth-order elasticity tensor, | is the
second-order identity tensor. T* has the relation with T
as:

T =(F) (et FHTHF)T (2

where F*=FFP™ s the non-plastic deformation
gradient with the plastic deformation gradient F?
evolvingas FP = [PFP.

The plastic part of velocity gradient can be
calculated through the crystal plasticity theory as

P =>7S§, S¢ =m{ ®n§ A3)

where m§ and ng are time-independent orthonormal
unit vectors which define the slip direction and slip plane
normal of the a-th slip system in a fixed reference
configuration, and S is the Schmid tensor.

2.2 Flow rule

The rate-dependent flow rule is adopted. The plastic
shearing rate on the a-th slip system can be given by an
exponential type law in terms of the resolved shear stress

(RSS) 7% and deformation resistance of the a-th slip
system s% as

1/m
sign(z%) (4)

a
o L

T
Y =%
s

where y, is a reference value, m is the strain rate
sensitive coefficient of material, and the symbol sign
stands for getting the sign symbol of 7% .

In Eq. (4), RSS may be approximated by

% =T":S¢ (5)

2.3 Work hardening
The KOCKS-type hardening rule is adopted.
s% evolves as

s =2 || (©)
B

where ©% s the rate of strain hardening on slip system
a due to shearing on the slip system f, which is related to
a single slip hardening rate, AP | and the hardening
matrix, q%, as  h*%” =q”h” (no sum on S here )
with AP = ho[l—sﬁ /541" . Parameters f,, ss and a are
hardening parameters. The hardening matrix, q“ﬂ ,
given by ZHOU et al [18] is adopted to account for the
latent hardening and self-hardening of a crystal.

2.4 Numerical algorithm

As described above, rate dependent crystal plasticity
model contains implicit equations with respect to T
and y%. Moreover, Eq. (5) indicates high-level
nonlinearity of this model since m is usually very small
for metals (0.01-0.05). These characters bring trouble
for numerical solution in computational efficiency and
stability. Therefore, many research works have been
done on numerical algorithms as discussed in Section 1.
Here, we focus on the work presented by KALIDINDI
et al [3]. In Ref. [3], a fully implicit time-integration
procedure was presented and relative equations were
deduced. Also, a two-level N—R iterative method was
adopted for numerical solution. It was found that it was
hard to find a suitable initial value for convergence of the
N-R iteration in each time step in finite element
calculation even though a very small step length was
adopted [4]. So, we introduced a homotopy
auto-changing continuation method to iterate a suitable
initial value before the N—R iteration algorithm was
invoked. Although this method achieved the computational
stability, it is low efficient due to much iteration
additionally introduced by the homotopy continuation
method besides the N—-R method. As a result, it was
applied only in calculations with a single crystal.

Here, a novel explicit model was established based
on Ref. [3]. During the modeling, ¢ and 7 = ¢ + Af denote
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the time at the start and the end of each increment,
respectively. Taylor series expansion of Eq. (5),
neglecting the high-order terms, is expressed as

y‘“(r)zy‘“(f){uﬁ[i— As H ™

m\ t%(t) s%(@)

= if 7%(¢) >
with o=1 ifr“@)=0
o =-1, else

When Ay =% ()At isassumed, Az® =AT":S¢
can be simplified since S§ is unchangeable with
deformation when calculations are carried out in the
crystallographic system, which will be discussed in
Section 2.6.

So, the increments of stress and resistance of slip
systems can be deduced based on the algorithm proposed
by KALINDINDI et al [3]. They take the forms as

AT =(TH"-T (-

S e {HQ[M— As” Hc“ @®)

m{ %@ s%@)

) B
As? =S 1 <« AvP |1 i M_AS_ 9
% XAy |: +m£ Tﬁ(l‘) sﬁ(t) )

where

R La-
T) —R-{z(A |)}

Ca:R:(%Baj (10)

B = AS{ +(S{)" A
A=F" T(OFT(0)F@)FP ()

Since all variables at time ¢ are known, Egs. (8) and
(9) are the equations set with the unknowns of AT and
As*. For the purpose of efficiency, a two-level
procedure is adopted here. Firstly, As” is fixed at its
value at time ¢, Eq. (8) can be deduced and written in its
components as
o, =1 ifi=k, j=1

S + K, )AT" . = H,, with 11
) zjkl) ij K {52 ~ 0, else (11)

where

Ky =2,

e mr(t)

Ay (S,
L(O)Ucakl?i’jakale(la:;)

* | tr * 5AS0[
Hy=T)"-T k,(t)—ZAy“{l— ! :lcakl

ms® (1)
Since both K, and H; can be calculated

directly, Eq. (11) is a linear equations set with the
unknowns of AT *l-j. Here, the complete pivot Gaussian

elimination method is adopted for the solution. After
getting AT *ij, the second-level solving procedure starts.
Equation (9) can also be rewritten into a linear equations
set in the same way, expressed as

G4+ X, DA =Y, with 1O~ Te=A
= W1

3T b 8, =0, else
where

5hP AyP
Xop=—5 —

ms” (t)
SAT", S

Yop = > hP Ayl | 14— 00

B mz’ﬂ(t)

So, As® can also be updated with the new AT *ij
by the complete pivot GAUSSIAN elimination method.
Then, a recalculation loop is invoked for a new AT *ij
by the new As® until the following equations are
satisfied.

AT, — AT, | <1045, (13)

-3
Ay = A" | <1075, (14)

Here, sy is the initial deformation resistance of slip
systems, and all slip systems are assumed to have the
same value.

2.5 Texture tracking

Texture evolution is tracked through a rotation
matrix Q, which is formed through three Euler angles in
Kalidindi’s notation (see Ref. [3]). This matrix was
defined to quantify the relation of vectors or tensors
between the crystallographic system (C.) and the global
system (C,p). Taking advantage of this rotation matrix,
there exist:

D, =Q D, Q" (15)
D.=Q"' D, Q" (16)

where D, stands for a tensor in C, and D, stands for the
one in C,.

In order to track texture evolution, the matrix Q
should be stored and updated step by step during forming
process. The equation proposed by KALIDINDI et al [3]
is employed as

Q(7)=F"(2)-Q() (17)

where F*(z') is the non-plastic part of the deformation
gradient at time 7.

2.6 Stress update systems
Since vectors and tensors related to crystals are
stored in C,, such as S§ and R, while the ones related
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to deformation, such as F, E, T and Q, provided by the
finite element method are stored in Cy. As we all know,
all tensors and vectors must be in the same system during
constitutive update. Therefore, the transformation
between systems for vectors and tensors is needed. There
are two ways for the transformation. One is to transfer
the ones in C, to C, so as to perform constitutive update
in C,, and the other is to transfer the ones in C, to C, so
as to perform constitutive update in C.. However, the
first way is expensive since the sizes of internal variables
related to crystals increase with the increase of the
number of elements (7.) and crystals (n.) at the level of
n.xn.. Nevertheless, the variables need to be transferred
in the second way are only related to elements. Thus, all
variables in C, are transferred to C; in this work in order
for computational efficiency. In this case, tensors related
to crystals are time-independent constants for all crystals
so that there is much less calculation to do. Here, we
have to mention that the obtained stress T and orientation
update matrix F* are also in C.. Therefore, it is required
to transfer them to C, to return to finite element method
and to calculate texture update.

2.7 Numerical procedure

According to the presented model, a user subroutine
VUMAT was developed under the environment of
ABAQUS/Explicit [19]. The procedure for coding is
listed below.

1) Get known variables of F(¢) and F(7) in Cy;

2) Grain number (k) starts from 1;

3) Get variables of Q%, FP(z), Ay%(t), s%(t)
and 7%(t) (o starts from 1);

4) Transfer F(¢) and F(z) to C,;

5) Calculate A, B*, C* and (T)";

6) Calculate K, and Hy, with As® =0;

7) Solve Eq. (11) to get ATI;;

8) Calc*ulate Xy and Y4
obtained AT} ;

9) Solve Eq. (12) to get anew As“ ;

10) If Egs. (13) and (14) are satisfied, go on; if not,
return to Step 6 with the new As? ;

11) Transfer AT and F* to Cy

12) Update FP(z) via Eq. (3), T'(r)=
T O+AT", s%(0)=s“()+As® , Ay%(z), s%(7)
and 7%(7);

13) Update Q%(r) by Eq. (16);

14) If A>N (total grains), go on, otherwise, k=k+1,
return to Step 3;

15) Calculate the volume-average Cauchy stress on
the material point T ;

16) Carry out the calculations of R(z)-T - RT(7)
(with R(7)=F(r)-U - (7)) to meet the requirements on
stress and strain in ABAQUS/Explicit ;

17) Subroutine ends and returns.

with the newly

2.8 Finite element modeling

A finite element model is created as shown in Fig. 1.
There are 1000 C3D8R (an eight-node linear brick
reduced integration and hourglass control element in
ABAQUS/Explicit) elements within a 1 mmXx1 mmx
1 mm cube. The primary load is along the V, direction
and the second one is along the V; direction. The bottom
face of the cube is fixed in the Y-direction. The left and
right lateral sides are with constraints which keep the
surface in a plane during deformation. Thus, the effects
of other neighboring materials can be simulated.

VA

Fig. 1 Finite element meshes and loading configuration

About 1000 orientations representing the initial
texture are mapped on the 1000 elements one by one.
Therefore, one element stands for an individual grain and
grain interactions can be taken into account from the
equilibrium between neighboring elements.

3 Model verification

3.1 Initial conditions

The initial texture represented by 1000 random
distributed orientations is shown in Fig. 2. Four typical
forming processes are introduced to verify the model in
texture prediction. They are uniaxial compression,
uniaxial tension, simple shear and plane—strain
compression which has the essence as sheet rolling
process. The deformation in all of the processes reaches a
true strain of 1.4 with the strain rate of 1 s '. The
material used in simulation is oxygen free high
conductivity (OFHC) copper, whose parameters are
listed in Table 1. 12 (111)(110) slip systems are
considered in the simulations.

3.2 Model efficiency

Uniaxial compression is calculated to study the
efficiency of the model. In the simulation, the machine is
a workstation with the configurations of 8 Intel Xeon
CPUs @ 2.53 GHz, and 12.0 GB memory. CPU time by
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using the presented algorithm (only 1 CPU used in this
case) was compared with that by using the implicit
algorithm proposed in Ref. [4], as listed in Table 2. In
this table, N, is element number, N, is crystal number
within one element, f-ex is the CPU time costed by the
explicit model, #im is the one costed by the implicit
model, and At and Aty are the maximal and minimal
time increments, respectively. The presented algorithm
shows much more efficient than the implicit algorithm
(more than 100 times).

3.3 Texture evolution in uniaxial compression

Uniaxial compression is achieved by releasing the
constraint of V3 in Fig. 1. The pole figures of {100},
{110} and {111} at a true strain of 1.4 are presented in
Figs. 3(a), (b) and (c), respectively. The experiments
carried out by BRONKHORST et al [20] are taken for
comparison. Figure 3 shows that both the predictions and

{100} - 1110}

(a) (b)
Fig. 2 Initial texture represented by 1000 randomly distributed orientation: (a) {100}; (b) {110}; (c) {111}

{110}

"

(b1) (b2)

Table 1 Material constants of OFHC copper

Parameter Value
Density, p/(kg'mm °) 8.9x107°
Elasticity constants, Cy;, Cio, C44/GPa 170, 124, 75

Reference value of slip rate, y, /st 0.001
Rate sensitivity coefficient, m 0.012
Initial critical RSS, s§ /MPa 16.0
Saturation strength, s¢/MPa 148
Initial hardening rate, #/MPa 180
Index a 2.25

Table 2 Comparable analysis of computational efficiency

N, N, t-ex/s t-im/s

Atax/s Atin/s

1000 1 151233 17821360.1 1.7x10°* 3.5x107°

Pode Figures

[Tex_1K_E|_Eq_Coenped
Coppet m3m)
(Complete data set
1000 data points

E qual Area pregection
Upper hemispheres
Half vacth:10°

(Chuster size:5°

Exp. densities (mud)
(Mire= 0,00, Max=3.28

1 —

3.00
2.62
2.25
1.87
1.50
1.12
0.75
0.37

(b3)
Fig. 3 Textures in axial compression at true strain of 1.4: (al—a3) Predictions of planes {100}, {110} and {111}; (b1-b3)
Experiments of planes {100}, {110} and {111} [20]
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experiments capture the {110} fiber texture and {111}
plane texture well. Moreover, they have the quantitatively
comparability.

3.4 Texture evolution in uniaxial tension
By releasing V3 and reversing V, in the model in

Fig. 1, uniaxial tension is calculated for texture evolution.

Figure 4 shows that both the prediction and experiment
results capture the {111} fiber texture well.

3.5 Texture evolution in simple shear
By releasing V3 and rotating 7, by 90° in the model

D

{100} {110}

(b2)
Fig. 4 Textures in axial tension at true strain of 1.4: (al—a3) Predictions of planes {100}, {110} and {111}; (b1-b3) Experiments of

planes {100}, {110} and {111} [20]

{110}

(b1) (b2)
Fig. 5 Textures in simple shear at true strain of 1.4: (al—a3) Predictions of planes {100}, {110} and {111}; (b1-b3) Experiments of
planes {100}, {110} and {111} [20]

in Fig. 1, simple shear is calculated for texture evolution.
Figure 5 shows that the predictions agree with the
experiments well. The highest-intensity textures occur at
30°, 90°, 150°, 210°, 270°, 330° LND on the {111} plane,
respectively.

3.6 Texture evolution in plane-strain compression
Setting V3=0, i.e. keeping the XY-plane fixed, the
plane—strain compression is achieved. The typical
textures in plane—strain compression are predicted, as
shown in Fig. 6, which agree with the experiments. The
highest intensity texture appears at £35° to ND along RD

Pole Figues

[Tex_1K_EI_Eq_Tensiod
Copper [m3m)

(Complate data set

1000 data points

Equal Asea projection
Upper hemispheres

(Chuster size:5”

(1

Exp. densities [mud)
(Mir= 0L01, Max= 7.90

e

A

(a3)

(b3)

Pole Figures

[Tex_1K_EI_Eq Sheat_|
Copper (m3m)

Complete data set

1000 data poirits

Equal Area projection
Uppes hemispheres

Half wadth 10°

Chuster size 5"

Exp. densities (mud)
Min= 0.01. Max= .48

(b3)
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{110}

@) @2)
{100}

(b1) (b2)

on the {111} plane.

From Sections 3.3 to 3.6, it can be found that the
presented model captures all of the important textures in
the  deformation uniaxial

processes  including

compression, uniaxial tension, simple shear and
plane—strain compression. Therefore, the model is
reliable to be applied for prediction of texture evolution

with varying deformation conditions.

4 Texture evolution with varying deformation
conditions

The model was applied to investigate the texture
evolution under different conditions. The effects of
deformation states, strain rates, and slip systems are
studied.

4.1 Effects of deformation states

Different deformation states are achieved by
adjusting the ratios of V3 to V>, i.e. k=V3/V,. If there is no
constraint on V3, the deformation is the uniaxial
compression. In this process, V3 is passive and the
texture evolution is illustrated in Fig. 3. When a weak
constraint is applied on V3, e.g. k=—0.43 (¥ is negative),
the {111} plane texture in Fig. 3 rotates to +35° to ND
along RD, as shown in Fig. 7(a), while the {100} texture
of that
compression. With increasing constraint on V3 until the

maintains the characteristics in uniaxial

plane—strain compression (k=0) is achieved, texture

Pole Figures

{111}

[Tex_1K_EI V3 0 Eq
Coppet (m3m]
Comnplete data set
1000 data points

E queal furea projechon
Upper hemispheres
Hall widthe 10°

Cluster size:5"

Exp. densities (mud)
Min= 0.00, Max=11.42

| —

(a3)

3.00
2.62
225
1.87
1.50
1.12
0.75
0.37

(b3)
Fig. 6 Textures in plane—strain compression at true strain of 1.4: (al—a3) Predictions of planes {100}, {110} and {111};
(b1-b3) Experiments of planes {100}, {110} and {111} [20]

characteristics in wuniaxial compression disappear
completely (as shown in Fig. 6). When the constraint on
V3 enhances further, e.g. k=0.14, k=0.43 and 4=0.71
(both V, and V; are negative), the strong textures
progress from +35° to ND in plane—strain compression
to fiber texture along RD direction on the {111} plane, as
shown in Figs. 7(b)—(d). It shows varying deformation
states change grain orientations and thus textures
remarkably. Additionally, the texture intensity shows an

increasing tendency with the increase of .

4.2 Effects of strain rates

Moreover, the strain rate of deformation does affect
on texture evolution. As our study, the texture types and
the positions of strong texture do not change with strain
rate. However, the intensity of texture reduces with the
increase of strain rate, as shown in Fig. 8. It can be
found that the texture intensity drops dramatically when
the strain rate increases from 10" s™' to 10? s, while
the reduction slows down when the strain rate increases
from 10 s' to 7x10* s™'. It can be explained that the
large strain rate makes no enough time for grain
orientation rotation in the first range. Then, in the
second range, the strain rate has already reached a high
level, i.e., there has not been enough time for grain
orientation rotation.

4.3 Effects of slip systems
Generally, only 12(111)(110) slip systems participate
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{110}

A

(d)
Fig. 7 Effects of deformation states on textures on planes {100}, {110} and {111}: (al—a3) k~=—0.43; (b1-b3) £/=0.14; (c1—c3) k=0.43;
(d1-d3) £/=0.71

12.5 the deformation of a face-centered cubic (FCC) metal.
120} « However, the experimental observation finds that

5 11s} (100)(011) slip systems are activated in deformation of
¥ FCC metals. So, here, different slip systems are
% 11O} considered to study their effects on textures. Figure 9
‘? 10.5 shows much more relaxed textures in terms of
.";E 10.0} orientations distribution and texture intensity in case of
2 12{(111)(110) +6 (100)(011) slip systems. It is because

951 more slip systems participating deformation improve the

9.0 0 ' : . deformation anisotropy of a grain; more homogeneous

20 40 60 80
Strain rate/10? . '
Fig. 8 Effects of strain rates on textures referred orientation.

deformation cause less orientations rotating to the
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Fig. 9 Effects of slip systems participating calculation on textures on planes {100}, {110} and {111}: (al—a3) 12(111)(110); (b1-b3)

12 (111)(110) +6 (100)(011)

5 Conclusions

1) An explicit model controlled by a linear
equations set was developed. Crystallographic-system
based solving procedure was proposed and the complete
pivot Gaussian elimination method was adopted for
solution. The model was proved much more efficient
(more than 100 time) than the implicit model.

2) The model captures all of the important textures
by comparing with the experimental results in the
deformation processes as uniaxial compression, uniaxial
tension, simple shear and plane-strain compression.

3) {111} plane texture progressed to £35° to ND to
{111} fiber texture with increasing k. High strain rate
does not change texture types but makes textures weak.
12 (111)(110) +6 (100)(011) slip systems participating
calculation make the predicted texture more relaxed than
only 12{111)(110) slip systems.
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