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Abstract: An explicit model controlled by a linear equations set was developed. This model was directly solved by the complete 
pivot GAUSSIAN elimination method without any iteration. In addition, crystallographic-system based solving procedure was 
proposed to reduce the additional calculation caused by grain rotation. By establishing crystal plasticity finite element model 
(CPFEM), the model was verified by comparing the predicted texture to the experimental results. Then, the model was applied to 
predict textures under different deformation states achieved by adjusting the ratio (k) of the loading velocities in Z and Y directions. 
The results show that the model is reliable in texture prediction (good agreement with the experiments in compression, tension, 
simple shear and plane−strain compression) and much more efficient (more than 100 times) than the implicit model; with the 
increasing of k, the strong texture progresses from ±35º to normal direction to fiber texture in the {111} plane and enhances in 
intensity; the texture intensity drops dramatically when the strain rate increases from 0.1 s−1 to 100 s−1, while drops slowly when the 
strain rate increases from 100 s−1 to 7×104 s−1, which indicates the computational stability of the model for simulation of ultra-high 
strain rate deformation. 
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1 Introduction 
 

Texture evolution takes place during plastic 
deformation of metals, which in turn results in 
anisotropic mechanical properties of the deformed part 
[1]. Additionally, texture evolution varies with different 
deformation states sensitively. So, texture prediction is 
an effective way for deformation design and performance 
control. Crystal plasticity model is widely known and 
utilized for texture prediction in metal deformation 
process. However, the major drawback of crystal 
plasticity models lies in computational issue [2], i.e. 
inefficient and unstable solution. The widely used 
Newton−Raphson (N−R) iteration approach [3−5] is 
computationally stable and accurate but inefficient due to 
massive iterations existing both at the local level to 
update the stress and globally to enforce equilibrium [6]. 
As to the implicit algorithms, rate−tangent method [7] 
and Euler forward method [8] are typical representatives 
of explicit algorithms, which promote the computational 
efficiency remarkably [6]. However, they were very rigid 

needing very small step length [8]. 
On the other hand, grains aggregate should be taken 

into account for prediction of texture evolution. Grains 
interaction during deformation process is a challenging 
issue in crystal plasticity modeling. To the problem of no 
grain interaction considered in the Taylor model [9], van 
HOUTTE et al [10] proposed a bicrystal model, so called 
LAMEL model, which calculated two crystals at the 
same time so that to consider grain interactions. The 
model was improved by van HOUTTE et al [11] from 
LAMEL model to ALAMEL model by considering two 
neighboring domains, the subdivision of a grain. 
Subsequently, MAHESH [12] proposed a binary-tree 
based model to maintain traction continuity across grain 
interface within an aggregate by dividing the aggregate 
to subaggregates and then subdividing until the smallest 
sub-divisions contain only single grains. Similarly, 
KUMAR et al [13] proposed a “stack” model based on 
the ALAMEL model to account for intra interactions by 
means of an arbitrary number N of co-deforming 
domains. In addition, self-consistent models [14−16] 
consider grain interaction by allowing constraints on 
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shearing directions of a grain but not applying full 
constraints. Also, crystal plasticity finite element model 
(CPFEM) [17] considers grain interactions by the nature 
that the nodes in finite element model are constrained by 
each other. 

In this work, Taylor series expansion was applied to 
recast the high-order nonlinear equation accounting for 
rate dependent shear strain rate into a linear equations set. 
Then, an incremental explicit model was deduced with 
the linear equations set as the control equation. This 
model was solved directly by the complete pivot 
Gaussian elimination method, which avoids iterations in 
the implicit model and overcomes the shortcomings 
caused by the approximation adopted in aforementioned 
explicit models. By developing user subroutine VUMAT, 
this model was embedded in the commercial software 
ABAQUS/Explicit. The model was verified on texture 
prediction in axial compression, tension, simple shear 
and plane−strain compression through a CPFEM. Then, 
the model was applied to investigate texture evolution 
under varying deformation states and strain rates. 
 
2 Crystal plasticity finite element modeling 
 
2.1 Constitutive relation 

The elastic constitutive relation for the stress in 
each grain is taken as 
 

* *:=T R E                                 (1) 
 
where * * T *(1/ 2)(( ) )≡ −E F F I  is an elastic strain 
measure, R is a fourth-order elasticity tensor, I is the 
second-order identity tensor. T* has the relation with T 
as: 

* * 1 * * T( ) {(det ) }( )− −≡T F F T F                  (2) 

where * p 1−=F FF  is the non-plastic deformation 
gradient with the plastic deformation gradient Fp 
evolving as p p p=F L F& .  

The plastic part of velocity gradient can be 
calculated through the crystal plasticity theory as 
 

p
0 0 0 0,α α α α α

α
γ= ≡ ⊗∑L S S m n&                   (3) 

where 0
αm  and 0

αn  are time-independent orthonormal 
unit vectors which define the slip direction and slip plane 
normal of the α-th slip system in a fixed reference 
configuration, and 0

αS  is the Schmid tensor. 
 
2.2 Flow rule 

The rate-dependent flow rule is adopted. The plastic 
shearing rate on the α-th slip system can be given by an 
exponential type law in terms of the resolved shear stress 

(RSS) ατ  and deformation resistance of the α-th slip 
system sα  as 

1/

0 sign( )
m

s

α
α α

α
τγ γ τ=& &                        (4) 

where 0γ&  is a reference value, m is the strain rate 
sensitive coefficient of material, and the symbol sign 
stands for getting the sign symbol of ατ . 

In Eq. (4), RSS may be approximated by 
 

*
0:α ατ = T S                                 (5) 

 
2.3 Work hardening 

The KOCKS-type hardening rule is adopted. 
sα evolves as 
 
s hα αβ β

β
γ= ∑ &&                              (6) 

where hαβ  is the rate of strain hardening on slip system 
α due to shearing on the slip system β, which is related to 
a single slip hardening rate, ( )h β , and the hardening 
matrix, αβq , as  ( )h hαβ αβ β= q  (no sum on β here ) 
with  ( )

0 s[1 / ]ah h s sβ β= − . Parameters h0, ss and a are 
hardening parameters. The hardening matrix, αβq , 
given by ZHOU et al [18] is adopted to account for the 
latent hardening and self-hardening of a crystal. 
 
2.4 Numerical algorithm 

As described above, rate dependent crystal plasticity 
model contains implicit equations with respect to *T  
and .αγ& Moreover, Eq. (5) indicates high-level 
nonlinearity of this model since m is usually very small 
for metals (0.01−0.05). These characters bring trouble 
for numerical solution in computational efficiency and 
stability. Therefore, many research works have been 
done on numerical algorithms as discussed in Section 1. 
Here, we focus on the work presented by KALIDINDI  
et al [3]. In Ref. [3], a fully implicit time-integration 
procedure was presented and relative equations were 
deduced. Also, a two-level N−R iterative method was 
adopted for numerical solution. It was found that it was 
hard to find a suitable initial value for convergence of the 
N−R iteration in each time step in finite element 
calculation even though a very small step length was 
adopted [4]. So, we introduced a homotopy 
auto-changing continuation method to iterate a suitable 
initial value before the N−R iteration algorithm was 
invoked. Although this method achieved the computational 
stability, it is low efficient due to much iteration 
additionally introduced by the homotopy continuation 
method besides the N−R method. As a result, it was 
applied only in calculations with a single crystal. 

Here, a novel explicit model was established based 
on Ref. [3]. During the modeling, t and τ = t + ∆t denote 
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the time at the start and the end of each increment, 
respectively. Taylor series expansion of Eq. (5), 
neglecting the high-order terms, is expressed as 
 

1( ) ( ) 1
( ) ( )

st
m t s t

α α
α α

α α
δ τγ τ γ

τ

⎡ ⎤⎛ ⎞Δ Δ
≈ + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

& &           
 
(7) 

 

1

1

1, if ( ) 0with
1, else

tαδ τ
δ

⎧ = ≥⎪
⎨

= −⎪⎩
 

When ( )t tα αγ γΔ = Δ&  is assumed, *
0:α ατΔ = ΔT S&  

can be simplified since 0
αS is unchangeable with 

deformation when calculations are carried out in the 
crystallographic system, which will be discussed in 
Section 2.6. 

So, the increments of stress and resistance of slip 
systems can be deduced based on the algorithm proposed 
by KALINDINDI et al [3]. They take the forms as 
 

* * tr *( ) ( )tΔ = − −T T T  
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Since all variables at time t are known, Eqs. (8) and 
(9) are the equations set with the unknowns of *ΔT  and 

.sαΔ  For the purpose of efficiency, a two-level 
procedure is adopted here. Firstly, sαΔ  is fixed at its 
value at time t, Eq. (8) can be deduced and written in its 
components as 

2*
2

2

1, if ,
( ) with

0, elseijkl ij kl
i k j l

K T H
δ

δ
δ

= = =⎧
+ Δ = ⎨ =⎩

(11) 

where 
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, , , , (1,3)
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Since both ijklK  and klH  can be calculated 

directly, Eq. (11) is a linear equations set with the 
unknowns of *

ijTΔ . Here, the complete pivot Gaussian 

elimination method is adopted for the solution. After 
getting *

ijTΔ , the second-level solving procedure starts. 
Equation (9) can also be rewritten into a linear equations 
set in the same way, expressed as 
 

3
3

3

1, if
( ) with

0, else
X s Yα
αβ αβ

δ α β
δ

δ
= =⎧

+ Δ = ⎨ =⎩
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So, sαΔ  can also be updated with the new *

ijTΔ  
by the complete pivot GAUSSIAN elimination method. 
Then, a recalculation loop is invoked for a new *

ijTΔ  
by the new sαΔ  until the following equations are 
satisfied.  

* ( 1) * ( ) 4
010n n

ij ijT T s+ −Δ − Δ <                   (13) 

3
( 1) ( ) 010n ns s sα α −
+Δ − Δ <                     (14) 

Here, s0 is the initial deformation resistance of slip 
systems, and all slip systems are assumed to have the 
same value. 
 
2.5 Texture tracking 

Texture evolution is tracked through a rotation 
matrix Q, which is formed through three Euler angles in 
Kalidindi’s notation (see Ref. [3]). This matrix was 
defined to quantify the relation of vectors or tensors 
between the crystallographic system (Cc) and the global 
system (Cg). Taking advantage of this rotation matrix, 
there exist: 
 

T
g c=D Q D Q                               (15) 

 
1 T

c g
− −=D Q D Q                            (16) 

 
where Dg stands for a tensor in Cg and Dc stands for the 
one in Cc. 

In order to track texture evolution, the matrix Q 
should be stored and updated step by step during forming 
process. The equation proposed by KALIDINDI et al [3] 
is employed as 
 

*( ) ( ) ( )tτ τ= ⋅Q F Q                           (17) 
 
where *( )τF  is the non-plastic part of the deformation 
gradient at time τ. 
 
2.6 Stress update systems 

Since vectors and tensors related to crystals are 
stored in Cc, such as α

0S  and R, while the ones related 
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to deformation, such as F, E, T and Q, provided by the 
finite element method are stored in Cg. As we all know, 
all tensors and vectors must be in the same system during 
constitutive update. Therefore, the transformation 
between systems for vectors and tensors is needed. There 
are two ways for the transformation. One is to transfer 
the ones in Cc to Cg so as to perform constitutive update 
in Cg, and the other is to transfer the ones in Cg to Cc so 
as to perform constitutive update in Cc. However, the 
first way is expensive since the sizes of internal variables 
related to crystals increase with the increase of the 
number of elements (ne) and crystals (nc) at the level of 
ne×nc. Nevertheless, the variables need to be transferred 
in the second way are only related to elements. Thus, all 
variables in Cg are transferred to Cc in this work in order 
for computational efficiency. In this case, tensors related 
to crystals are time-independent constants for all crystals 
so that there is much less calculation to do. Here, we 
have to mention that the obtained stress T and orientation 
update matrix F* are also in Cc. Therefore, it is required 
to transfer them to Cg to return to finite element method 
and to calculate texture update. 
 
2.7 Numerical procedure 

According to the presented model, a user subroutine 
VUMAT was developed under the environment of 
ABAQUS/Explicit [19]. The procedure for coding is 
listed below. 

1) Get known variables of F(t) and F(τ) in Cg; 
2) Grain number (k) starts from 1; 
3) Get variables of αQ , )(p tF , )(tαγΔ , )(tsα  

and )(tατ  (α starts from 1); 
4) Transfer F(t) and F(τ) to Cc; 
5) Calculate A, αB , αC  and tr*)(T ; 
6) Calculate Kijkl and Hkl with 0=Δ αs ; 
7) Solve Eq. (11) to get *

ijTΔ ; 
8) Calculate αβX  and αβY  with the newly 

obtained *
ijTΔ ; 

9) Solve Eq. (12) to get a new αsΔ ; 
10) If Eqs. (13) and (14) are satisfied, go on; if not, 

return to Step 6 with the new αsΔ ; 
11) Transfer *TΔ  and *F  to Cg; 
12) Update )(p τF  via Eq. (3), =)(* τT  

** )( TT Δ+t , ααα τ stss Δ+= )()( , )(τγ αΔ , )(ταs  
and )(ττ α ; 

13) Update )(ταQ  by Eq. (16); 
14) If k>N (total grains), go on, otherwise, k=k+1, 

return to Step 3;  
15) Calculate the volume-average Cauchy stress on 

the material point T ; 
16) Carry out the calculations of )()( T ττ RTR ⋅⋅  

(with )()()( 1 τττ −⋅= UFR ) to meet the requirements on 
stress and strain in ABAQUS/Explicit ; 

17) Subroutine ends and returns. 

2.8 Finite element modeling 
A finite element model is created as shown in Fig. 1. 

There are 1000 C3D8R (an eight-node linear brick 
reduced integration and hourglass control element in 
ABAQUS/Explicit) elements within a 1 mm×1 mm×   
1 mm cube. The primary load is along the V2 direction 
and the second one is along the V3 direction. The bottom 
face of the cube is fixed in the Y-direction. The left and 
right lateral sides are with constraints which keep the 
surface in a plane during deformation. Thus, the effects 
of other neighboring materials can be simulated. 
 

 

Fig. 1 Finite element meshes and loading configuration 
 

About 1000 orientations representing the initial 
texture are mapped on the 1000 elements one by one. 
Therefore, one element stands for an individual grain and 
grain interactions can be taken into account from the 
equilibrium between neighboring elements. 
 
3 Model verification 
 
3.1 Initial conditions 

The initial texture represented by 1000 random 
distributed orientations is shown in Fig. 2. Four typical 
forming processes are introduced to verify the model in 
texture prediction. They are uniaxial compression, 
uniaxial tension, simple shear and plane−strain 
compression which has the essence as sheet rolling 
process. The deformation in all of the processes reaches a 
true strain of 1.4 with the strain rate of 1 s−1. The 
material used in simulation is oxygen free high 
conductivity (OFHC) copper, whose parameters are 
listed in Table 1. 12 )110(111〉〈  slip systems are 
considered in the simulations. 
 
3.2 Model efficiency 

Uniaxial compression is calculated to study the 
efficiency of the model. In the simulation, the machine is 
a workstation with the configurations of 8 Intel Xeon 
CPUs @ 2.53 GHz, and 12.0 GB memory. CPU time by 
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using the presented algorithm (only 1 CPU used in this 
case) was compared with that by using the implicit 
algorithm proposed in Ref. [4], as listed in Table 2. In 
this table, Ne is element number, Nc is crystal number 
within one element, t-ex is the CPU time costed by the 
explicit model, t-im is the one costed by the implicit 
model, and Δtmax and Δtmin are the maximal and minimal 
time increments, respectively. The presented algorithm 
shows much more efficient than the implicit algorithm 
(more than 100 times). 
 
3.3 Texture evolution in uniaxial compression 

Uniaxial compression is achieved by releasing the 
constraint of V3 in Fig. 1. The pole figures of {100}, 
{110} and {111} at a true strain of 1.4 are presented in 
Figs. 3(a), (b) and (c), respectively. The experiments 
carried out by BRONKHORST et al [20] are taken for 
comparison. Figure 3 shows that both the predictions and  

Table 1 Material constants of OFHC copper 

Parameter Value 

Density, ρ/(kg·mm−3) 8.9×10−9 

Elasticity constants, C11, C12, C44/GPa 170, 124, 75 

Reference value of slip rate, 0γ& /s−1 0.001 

Rate sensitivity coefficient, m 0.012 

Initial critical RSS, α
0s /MPa 16.0 

Saturation strength, ss/MPa 148 

Initial hardening rate, h0/MPa 180 

Index a 2.25 

 
Table 2 Comparable analysis of computational efficiency 

Ne Nc t-ex/s t-im/s Δtmax/s Δtmin/s

1000 1 15123.3 17821360.1 1.7×10−8 3.5×10−9

 
 

 
Fig. 2 Initial texture represented by 1000 randomly distributed orientation: (a) {100}; (b) {110}; (c) {111} 

 

 
Fig. 3 Textures in axial compression at true strain of 1.4: (a1−a3) Predictions of planes {100}, {110} and {111}; (b1−b3) 
Experiments of planes {100}, {110} and {111} [20] 
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experiments capture the {110} fiber texture and {111} 
plane texture well. Moreover, they have the quantitatively 
comparability. 
 
3.4 Texture evolution in uniaxial tension 

By releasing V3 and reversing V2 in the model in  
Fig. 1, uniaxial tension is calculated for texture evolution. 
Figure 4 shows that both the prediction and experiment 
results capture the {111} fiber texture well. 
 
3.5 Texture evolution in simple shear 

By releasing V3 and rotating V2 by 90° in the model 

in Fig. 1, simple shear is calculated for texture evolution. 
Figure 5 shows that the predictions agree with the 
experiments well. The highest-intensity textures occur at 
30°, 90°, 150°, 210°, 270°, 330° ⊥ND on the {111} plane, 
respectively. 
 
3.6 Texture evolution in plane-strain compression 

Setting V3=0, i.e. keeping the XY-plane fixed, the 
plane−strain compression is achieved. The typical 
textures in plane−strain compression are predicted, as 
shown in Fig. 6, which agree with the experiments. The 
highest intensity texture appears at ±35° to ND along RD  

 

 
Fig. 4 Textures in axial tension at true strain of 1.4: (a1−a3) Predictions of planes {100}, {110} and {111}; (b1−b3) Experiments of 
planes {100}, {110} and {111} [20] 

 

 
Fig. 5 Textures in simple shear at true strain of 1.4: (a1−a3) Predictions of planes {100}, {110} and {111}; (b1−b3) Experiments of 
planes {100}, {110} and {111} [20] 
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Fig. 6 Textures in plane−strain compression at true strain of 1.4: (a1−a3) Predictions of planes {100}, {110} and {111};      
(b1−b3) Experiments of planes {100}, {110} and {111} [20] 
 
on the {111} plane. 

From Sections 3.3 to 3.6, it can be found that the 
presented model captures all of the important textures in 
the deformation processes including uniaxial 
compression, uniaxial tension, simple shear and 
plane−strain compression. Therefore, the model is 
reliable to be applied for prediction of texture evolution 
with varying deformation conditions. 
 
4 Texture evolution with varying deformation 

conditions 
 

The model was applied to investigate the texture 
evolution under different conditions. The effects of 
deformation states, strain rates, and slip systems are 
studied. 
 
4.1 Effects of deformation states 

Different deformation states are achieved by 
adjusting the ratios of V3 to V2, i.e. k=V3/V2. If there is no 
constraint on V3, the deformation is the uniaxial 
compression. In this process, V3 is passive and the 
texture evolution is illustrated in Fig. 3. When a weak 
constraint is applied on V3, e.g. k=−0.43 (V2 is negative), 
the {111} plane texture in Fig. 3 rotates to ±35° to ND 
along RD, as shown in Fig. 7(a), while the {100} texture 
maintains the characteristics of that in uniaxial 
compression. With increasing constraint on V3 until the 
plane−strain compression (k=0) is achieved, texture 

characteristics in uniaxial compression disappear 
completely (as shown in Fig. 6). When the constraint on 
V3 enhances further, e.g. k=0.14, k=0.43 and k=0.71 
(both V2 and V3 are negative), the strong textures 
progress from ±35° to ND in plane−strain compression 
to fiber texture along RD direction on the {111} plane, as 
shown in Figs. 7(b)−(d). It shows varying deformation 
states change grain orientations and thus textures 
remarkably. Additionally, the texture intensity shows an 
increasing tendency with the increase of k. 
 
4.2 Effects of strain rates 

Moreover, the strain rate of deformation does affect 
on texture evolution. As our study, the texture types and 
the positions of strong texture do not change with strain 
rate. However, the intensity of texture reduces with the 
increase of strain rate, as shown in  Fig. 8. It can be 
found that the texture intensity drops dramatically when 
the strain rate increases from 10−1 s−1 to 102 s−1, while 
the reduction slows down when the strain rate increases 
from 102 s−1 to 7×104 s−1. It can be explained that the 
large strain rate makes no enough time for grain 
orientation rotation in the first range. Then, in the 
second range, the strain rate has already reached a high 
level, i.e., there has not been enough time for grain 
orientation rotation. 
 
4.3 Effects of slip systems 

Generally, only 12 )110(111〉〈  slip systems participate 
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Fig. 7 Effects of deformation states on textures on planes {100}, {110} and {111}: (a1−a3) k=−0.43; (b1−b3) k=0.14; (c1−c3) k=0.43; 
(d1−d3) k=0.71 
 

 
Fig. 8 Effects of strain rates on textures 

the deformation of a face-centered cubic (FCC) metal. 
However, the experimental observation finds that 

)011(100〉〈  slip systems are activated in deformation of 
FCC metals. So, here, different slip systems are 
considered to study their effects on textures. Figure 9 
shows much more relaxed textures in terms of 
orientations distribution and texture intensity in case of 
12 )110(111〉〈 +6 )011(100〉〈  slip systems. It is because 
more slip systems participating deformation improve the 
deformation anisotropy of a grain; more homogeneous 
deformation cause less orientations rotating to the 
referred orientation. 
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Fig. 9 Effects of slip systems participating calculation on textures on planes {100}, {110} and {111}: (a1−a3) 12 )110(111〉〈 ; (b1−b3) 
12 )110(111〉〈 +6 )011(100〉〈  
 
 
5 Conclusions 
 

1) An explicit model controlled by a linear 
equations set was developed. Crystallographic-system 
based solving procedure was proposed and the complete 
pivot Gaussian elimination method was adopted for 
solution. The model was proved much more efficient 
(more than 100 time) than the implicit model. 

2) The model captures all of the important textures 
by comparing with the experimental results in the 
deformation processes as uniaxial compression, uniaxial 
tension, simple shear and plane-strain compression.  

3) {111} plane texture progressed to ±35° to ND to 
{111} fiber texture with increasing k. High strain rate 
does not change texture types but makes textures weak. 
12 )110(111〉〈 +6 )011(100〉〈  slip systems participating 
calculation make the predicted texture more relaxed than 
only 12 )110(111〉〈  slip systems. 
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基于晶体塑性有限元方法的不同变形状态下织构演化预测 
 

李宏伟，杨  合 
 

西北工业大学 凝固技术国家重点实验室，西安 710072 

 
摘  要：提出一种以线性方程组为控制方程的显式晶体塑性模型。该模型可用高斯全主元消去法直接求解，无需

任何迭代。提出基于晶体学坐标系的求解流程以减少由于变形中晶粒旋转而额外增加的计算量。建立晶体塑性有

限元模型，并将预测结果与试验结果进行对比，验证该模型在织构演化预测方面的可靠性。该模型被用于预测不

同变形状态下的织构演化，而这些不同的变形状态是通过调整 Z 和 Y 方向上的加载速度比(k)实现的。实验结果表

明：该模型在织构演化预测方面是可靠的(在压缩、拉伸、简单剪切和平面应变压缩过程中的预测结果与试验吻合

良好)和高效的(比隐式模型快 100 多倍)；随着 k 值的增大，强织构由与法向(ND)成±35°角向{111}面上的丝织构

转变，且织构强度增大；当应变速率在 0.1~100 s−1 之间增大时，织构强度迅速降低，而当应变速率在 100~7×104 s−1

之间增大时，织构强度缓慢减小，这表明该模型在模拟超高应变速率变形时也是数值稳定的。 

关键词：晶体塑性；织构演化；变形状态；应变速率；显式模型 
(Edited by DENG Lü-xiang) 

 


