

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 22(2012) 3108-3112

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Effect of Na₂O on formation of calcium aluminates in CaO-Al₂O₃-SiO₂ system

YU Hai-yan¹, PAN Xiao-lin¹, WANG Bo^{1, 2}, ZHANG Wu¹, SUN Hui-lan², BI Shi-wen¹

1. School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China;

2. School of Materials Science and Engineering, Hebei University of Science and Technology,

Shijiazhuang 050018, China

Received 12 December 2011; accepted 21 May 2012

Abstract: The formation characteristics of calcium aluminates in the CaO–Al₂O₃–SiO₂ system with sodium oxide was investigated by XRD, SEM–EDS and DSC–TG technologies. The main phases in the clinker after sintering at 1350 °C are 12CaO·7Al₂O₃, 2CaO·Al₂O₃·SiO₂ and 2CaO·SiO₂ when the mass ratio of Al₂O₃ to SiO₂ is 3.0 and the molar ratio of CaO to Al₂O₃ is 1.0. The proportion of 12CaO·7Al₂O₃ increases with the increase of Na₂O addition when the molar ratio of Na₂O to Al₂O₃ is from 0 to 0.4, while the proportion of 2CaO·Al₂O₃·SiO₂ decreases with the increase of Na₂O addition. Na₂O forms solid solution in 12CaO·7Al₂O₃, which increases the volume of elementary cell of 12CaO·7Al₂O₃. The formation temperature of 12CaO·7Al₂O₃ is decreased by 30 °C when the molar ratio of Na₂O to Al₂O₃ increases from 0 to 0.4 determined by DSC. The alumina leaching property of clinker increases obviously with the increase of Na₂O addition.

Key words: CaO-Al₂O₃-SiO₂ system; Na₂O; Al₂O₃; 12CaO·7Al₂O₃; sintering; leaching

1 Introduction

CaO-Al₂O₃-SiO₂ (C-A-S) ternary system is of considerable importance in oxide ceramics, cement chemistry, metallurgical slags and geochemistry [1–3]. Meanwhile, the C-A-S system plays an important role in the production of alumina industry by the sintering process in China [4]. The phase diagram of the C-A-S system can be seen elsewhere, and the thermodynamic analyses of the ternary system have been performed by PELTON et al [5] using a quasichemical model, by WANG et al [6] using an ionic sublattice model and by FABRICHNAYA and NERAD [7] using a molecular model.

Meanwhile, the formation characteristics of calcium aluminates has been widely investigated [8,9], such as $3CaO \cdot Al_2O_3$ (C₃A) [10], $12CaO \cdot 7Al_2O_3$ (C₁₂A₇) [11], CaO \cdot Al_2O_3 (CA) [12], CaO · 2Al₂O₃ (CA₂) [13] and CaO · 6Al₂O₃ (CA₆) [14]. GRZESZCZYK [15] and OSTROWSKI and FLAZNY [16] studied the solid solutions of calcium aluminates with sodium ion formed at high temperature in CaO-Al₂O₃ binary system, and sodium ions can be built into the calcium aluminate system. Furthermore, SUN et al [17] found that addition of Na₂O during the sintering process can promote the alumina leaching property of calcium aluminate slag, but the mechanism was not proposed.

In the C-A-S system, the phases in the sintered clinker referred to alumina production consist of calcium aluminates, $2CaO \cdot SiO_2$ (C₂S) and $2CaO \cdot Al_2O_3 \cdot SiO_2$ (C₂AS). C₂S comprises several different types, such as α' -C₂S, β -C₂S, γ -C₂S. Previous studies [18] indicated that $C_{12}A_7$ has better alumina leaching properties than other calcium aluminates in sodium carbonate solution, while C_2AS is difficult to be extracted to solution. C_2S is very stable in sodium carbonate solution. For the great role of sodium oxide during the sintering process, it is necessary to reveal the reaction mechanisms in the C-A-S system in the presence of sodium ions. Therefore, the aim of this work is to study the effect of sodium oxide on the sintering characteristics and leaching property of calcium aluminates in the C-A-S system with low mass ratios of Al_2O_3 to SiO_2 and CaO to Al_2O_3 .

2 Experimental

Analytically pure reactants were used in the present

Foundation item: Projects (51174054, 51104041) supported by the National Natural Science Foundation of China Corresponding author: YU Hai-yan; Tel: +86-24-83686460; E-mail: yuhy@smm.neu.edu.cn DOI: 10.1016/S1003-6326(11)61578-1

work and the calculated oxide ratios for sintering process are listed in Table 1. CaO and Na₂O were added in the forms of CaCO₃ and Na₂CO₃, respectively. The mass ratio of Al₂O₃ to SiO₂ (A/S) is 3.0, and the molar ratio of CaO to Al₂O₃ (C/A) is 1.0 (the residual CaO subtracted the composition to form 2CaO·SiO₂). The molar ratio of Na₂O to Al₂O₃ (N/A) ranges from 0 to 0.4 as presented in Table 1. The mixtures were milled in a ball mill for 3 h, and then sintered at 1350 °C for 1 h in a MoSi₂ resistance furnace followed by cooling in the furnace.

Table 1 Oxide ratios of samples for sintering

			-	-	
N/	A w(A	Al ₂ O ₃)/%	w(CaO)/%	w(SiO ₂)/%	w(Na ₂ O)/%
()	39.93	46.36	13.31	0
0.	1	38.98	45.66	12.99	2.37
0.	2	38.08	44.60	12.69	4.63
0.	3	37.22	43.59	12.41	6.79
0.	4	36.39	42.63	12.13	8.85

The sintered clinkers were leached at 75 °C for 30 min in sodium carbonate solution. The concentration of sodium carbonate solution (in the form of Na₂O) is 80 g/L. The liquid-to-solid ratio of sodium carbonate solution to clinker for leaching is 10. The leached slurry was filtrated using a Buchner funnel. The concentration of caustic alkali (N_K), total alkali (N_T) and Al₂O₃ (AO) in the filter liquor were determined by the volumetric method, while the filter residue was washed carefully and dried for chemical analysis. The alumina leaching rate is calculated according to the following formula:

$$\eta_{\rm Al_2O_3} = \left(1 - \frac{(\rm A/S)_{\rm residue}}{(\rm A/S)_{\rm clinker}}\right) \times 100\%$$
(1)

where $(A/S)_{residue}$ and $(A/S)_{clinker}$ are the mass ratios of Al_2O_3 to SiO_2 in the leached residue and sintered clinker, respectively.

The contents of Al₂O₃, SiO₂ and Na₂O in samples and filtrate were analyzed by X-ray fluorescence (XRF, ZSX100e). Phase components of the clinker were identified by X-ray diffraction (PANalytical PW3040/60). SEM (SHIMADZU SSX–550) and EDS (DX-4) were used for microstructure and component analysis. Simultaneously recorded studies of differential scanning calorimetry (DSC) and thermogravimetric analysis were carried out using a NETZSCH STA409C/CD simultaneous thermal analyzer in a dynamic Ar atmosphere. The samples with the N/A ratios of 0 and 0.4 in Table 1 were selected. The samples were heated up to 1500 °C at a rate of 10 °C/min.

3 Results and discussion

3.1 Phase composition characteristics

The XRD patterns of sintered clinkers at different N/A ratios are shown in Fig. 1. When N/A=0.1, the clinker contains C₂AS, C₁₂A₇, β -C₂S, γ -C₂S as well as some CA and CA₂. As the N/A ratio increases to 0.2, the phase composition and content of clinker are different. The content of C₁₂A₇ increases, while the content of C₂AS decreases. Meanwhile, CA₂ disappears, and β -C₂S is formed during the sintering process. When N/A=0.4, most of the clinker is C₁₂A₇, and the content of C₂AS is very low. Furthermore, both CA and CA₂ do not exist, while β -C₂S and γ -C₂S coexist in the clinker. It can be concluded that as the molar ratio of Na₂O to Al₂O₃ increases from 0 to 0.4, the proportion of C₁₂A₇ in the clinker increases with the increase of N/A ratio when A/S=3.0 and C/A=1.0.

Fig. 1 XRD patterns of sintered clinkers at different N/A ratios

The crystal structure of $C_{12}A_7$ also changes as the N/A ratio increases. The interplanar spacing corresponding to the strongest characteristic peak $(2\theta=18.109^\circ)$ of $C_{12}A_7$ and the parameter of cubic cell as well as its volume at different N/A were calculated, as listed in Table 2. Both the interplanar spacing and the volume of elementary cell of $C_{12}A_7$ increase with the

	Table 2	Effect of N/A	ratio on lattice	parameters of $C_{12}A_7$
--	---------	---------------	------------------	---------------------------

N/A	Interplanar	Parameter of	Volume of cubic
N/A	spacing, d/Å	cubic cell, a/Å	cell/Å ³
0	4.8945	11.9890	1723.25
0.1	4.8950	11.9968	1726.62
0.2	4.8967	11.9979	1727.09
0.3	4.8975	12.0035	1729.51
0.4	4.8980	12.0090	1731.89

3110

increase of N/A, indicating that Na₂O forms solid solution in $C_{12}A_7$, which is consistent with Ostrowski's results [16]. Therefore, the solid solution of Na₂O in $C_{12}A_7$ is beneficial to the formation of $C_{12}A_7$.

When N/A=0.4, the representative microstructure of sintered clinker is shown in Fig. 2. The morphology of particles is massive, and the particles can be divided to two kinds by the size. Most of the particles have a larger size, and are usually several micrometers, even larger than 10 μ m. The other particles are relatively small, and are usually smaller than 1 μ m. These particles are adsorbed on the surface of the larger particles.

Fig. 2 SEM images of sintered clinker when N/A=0.4: (a) Backscattered electron image; (b) Secondary electron image

The compositions of larger particles (points 1 and 2 in Fig. 2(b)) and smaller particles (point 3) determined by EDS analysis are listed in the left of Table 3, and the corresponding compositions of oxides are calculated in the right of Table 3. No SiO₂ is discerned in the large particles, and the compositions are similar to of C₁₂A₇. Therefore, the larger particles are $C_{12}A_7$. The composition ratio of CaO to SiO₂ in the smaller particles is close to 2, indicating that the smaller particles are C_2S . Furthermore, as presented in Table 3, the composition of Na₂O in the larger particles is about 4%, while the composition of Na₂O in the smaller particles is below 1%. Because no compound containing Na₂O was found by XRD analysis, Na₂O must be solid dissolved in the crystal lattice of $C_{12}A_7$, which is consistent with the calculated results of lattice parameters of C12A7, as presented in Table 2.

 Table 3 Phase compositions of clinker when N/A=0.4 corresponding to Fig. 2(b)

		<u> </u>)	-1			Cala	المغمط	
Doint	Original composition/%				Calculated				
Font	0	Na	A 1	C	C :	No O	A1.0	C-O	<u>s:0</u>
	0	INa	AI	Ca	51	Na ₂ O	AI_2O_3	CaO	5102
1	38.46	2.72	27.45	31.37	0.00	3.67	51.85	34.73	0.00
2	39.03	3.06	27.87	30.04	0.00	4.12	52.65	33.26	0.00
3	38.23	0.60	20.85	30.86	9.47	0.81	39.38	34.16	20.30

3.2 Thermal analysis

The DSC heating and TG curves of both samples with the N/A ratios of 0 and 0.4 are shown in Fig. 3. Two strong endothermic peaks with a large gravity decrease at 798 °C exist in both curves, indicating that they relate to the decomposition of CaCO₃. A small endothermic peak with a small gravity decrease at 864 °C in Fig. 3(b) indicates that it relates to the melting of Na₂CO₃. C₂S is formed below 1300 °C [4], occurring at the endothermic peaks between 1000 °C and 1300 °C for both samples. As shown in Fig. 1, C₁₂A₇ is the main phase in the clinker when the N/A ratio is 0.4, and therefore, the large endothermic peak at 1360 °C in Fig. 3(b) relates to the

Fig. 3 DSC-TG curves of different mixtures during heating process: (a) N/A=0; (b) N/A=0.4

formation of $C_{12}A_7$. As an intermediate phase, C_2AS is formed before $C_{12}A_7$ in the CaO–Al₂O₃–SiO₂ system [4]. Therefore, the endothermic peak at 1342 °C should be associated with the formation of C_2AS , and the endothermic peak at 1390 °C represents the formation of $C_{12}A_7$. Addition of Na₂O can not only promote the formation of $C_{12}A_7$ and inhibit the formation of C_2AS , but also decrease the formation temperature of $C_{12}A_7$ by 30 °C.

3.3 Alumina leaching property

The leaching results of clinkers at different N/A ratios in sodium carbonate solution are listed in Table 4, and alumina leaching rates are calculated by formula (1) as shown in Fig. 4. The reaction of calcium aluminates with sodium carbonate solution is shown in formula (2).

$$x \text{CaO·yAl}_2\text{O}_3 + x \text{Na}_2\text{CO}_3 + (x+3y)\text{H}_2\text{O} \longrightarrow$$
$$x \text{CaCO}_3 \downarrow + 2y \text{NaAl}(\text{OH})_4 + (2x-2y) \text{NaOH}$$
(2)

The alumina leaching rate increases obviously with the increase of N/A ratio. It is 86.91% when N/A=0.4, which is much higher than that when N/A=0 by 43.52%. Therefore, the addition of Na₂O can greatly improve the leaching properties of sintered clinker.

The XRD patterns of leached residues are shown in Fig. 5. The main phases are CaCO₃, C_2S and C_2AS . No

 Table 4 Leaching results of clinkers at different N/A ratios in sodium carbonate solution

N/A	Liquor co	ncentration	Solid composition/%		
	N_K	N_{T}	AO	Al_2O_3	SiO ₂
0	15.32	89.69	18.16	23.06	13.58
0.1	20.15	89.35	22.90	17.49	14.03
0.2	24.18	90.08	26.71	13.33	14.01
0.3	28.81	90.12	31.51	8.24	14.86
0.4	30.43	89.80	33.68	5.71	14.54

Fig. 4 Effect of N/A ratio on alumina leaching rate of clinkers

Fig. 5 XRD patterns of leached residues at different N/A ratios

 $C_{12}A_7$ is found in the leached residues, indicating that all Al_2O_3 in $C_{12}A_7$ is extracted into the solution during the leaching process.

4 Conclusions

1) Na₂O promotes the formation of $C_{12}A_7$ and inhibits the formation of C_2AS sintered at 1350 °C when A/S=3.0 and C/A=1.0 in the CaO-Al₂O₃-SiO₂ system.

2) Na₂O forms solid solution in $C_{12}A_7$ which increases the volume of elementary cell of $C_{12}A_7$.

3) The formation temperature of $C_{12}A_7$ is decreased by 30 °C when the molar ratio of Na₂O to Al₂O₃ increases from 0 to 0.4, and the leaching properties of the sintered clinker are greatly increased.

References

- BANIJAMALI S, EFTEKHARI Y B, REZAIE H R, MARGHUSSIAN V K. Crystallization and sintering characteristics of CaO-Al₂O₃-SiO₂ glasses in the presence of TiO₂, CaF₂ and ZrO₂
 Thermochimica Acta, 2009, 488(1-2): 60–65.
- [2] SINGH V K. Sintering of calcium aluminate mixes [J]. British Ceramic Transactions, 1999, 98(4): 187–191.
- [3] MELLER N, HALL C, PHIPPS J S. A new phase diagram for the CaO-Al₂O₃-SiO₂-H₂O hydroceramic system at 200 °C [J]. Materials Research Bulletin, 2005, 40(5): 715-723.
- BI Shi-wen, YU Hai-yan. Production technology of alumina [M]. Beijing: Chemical Industry Press, 2006: 225–230. (in Chinese)
- [5] PELTON A D, WU P, ERIKSSON G. Critical evaluation and optimization of the phase diagrams and thermodynamic properties of oxide systems [R]. Final Report, Center for Research in Computational Thermochemistry, Ecole Polytechnique. Montreal, Canada, 1984: 1–14.
- [6] WANG X, HILLERT M, SUNDMAN B. A thermodynamic evaluation of the Al₂O₃-CaO-SiO₂ system [R]. TRITA-MAC-0407, Royal Institute of Technology. Stockholm, 1989: 1–19.
- [7] FABRICHNAYA O B, NERÁD I. Thermodynamic properties of liquid phase in the CaO·SiO₂-CaO·Al₂O₃·2SiO₂- 2CaO·Al₂O₃·SiO₂ system [J]. Journal of the European Ceramic Society, 2000, 20(4): 505-515.

3112

- [8] HALLSTEDL B. Assessment of the CaO–Al₂O₃ System [J]. Journal of the American Ceramic Society, 1990, 73(1): 15–23.
- [9] SINGH V K, ALI M M, MANDAL U K. Formation kinetics of calcium aluminates [J]. Journal of the American Ceramic Society, 1990, 73(4): 872–876.
- [10] MOHAMED B M, SHARP J H. Kinetics and mechanism of formation of tricalcium aluminate, Ca₃Al₂O₆ [J]. Thermochimica Acta, 2002, 388(1–2): 105–114.
- [11] YI H C, GUIGNÉ J Y. Preparation of calcium aluminate matrix composites by combustion synthesis [J]. Journal of Materials Science, 2002, 37(21): 4537–4543.
- [12] CHEN Guo-hua. Mechanical activation of calcium aluminate formation from CaCO₃-Al₂O₃ mixtures [J]. Journal of Alloys and Compounds, 2006, 416(1–2): 279–283.
- [13] IFTEKHAR S, GRINS J, SVENSSON G, LÖÖF J, JARMAR T, BOTTON G A, ANDREI C M, ENGQVIST H. Phase formation of

 $CaAl_2O_4$ from $CaCO_3$ - Al_2O_3 powder mixtures [J]. Journal of the European Ceramic Society, 2008, 28(4): 747–756.

- [14] RIDWAN I, ASMI D. The use of rietveld technique to study phase composition and developments of calcium aluminate [J]. AIP Conference Proceedings, 2008, 989: 180–183.
- [15] GRZESZCZYK S. Solid solutions of C₃A–Na₂O in C₁₂A₇ [J]. Cement and Concrete Research, 1986, 16(6): 798–804.
- [16] OSTROWSKI C, ELAZNY J. Solid solutions of calcium aluminates C₃A, C₁₂A₇ and CA with sodium oxide [J]. Journal of Thermal Analysis and Calorimetry, 2004, 75(3): 867–885.
- [17] SUN Hui-lan, WANG Bo, YU Hai-yan, BI Shi-wen, TU Gan-feng. Effect of Na₂O on alumina leaching and self-disintegrating property of calcium aluminate slag [J]. Light Metals, 2010: 29–32.
- [18] CHOU K S, BURNET G. Formation of calcium aluminates in the lime-sinter process. Part II. Kinetic study [J]. Cement and Concrete Research, 1981, 11(2): 167–174.

氧化钠对 CaO-Al₂O₃-SiO₂ 三元系铝酸钙形成规律的影响

于海燕¹,潘晓林¹,王波^{1,2},张武¹,孙会兰²,毕诗文¹

1. 东北大学 材料与冶金学院, 沈阳 110004;
 2. 河北科技大学 材料科学与工程学院, 石家庄 050018

摘 要:利用 XRD、SEM-EDS 和 DSC-TG 技术研究了添加 Na₂O 的 CaO-Al₂O₃-SiO₂ 体系中铝酸钙的形成规律。 结果表明,当 Al₂O₃与 SiO₂ 的质量比为 3.0、CaO 与 Al₂O₃ 的摩尔比为 1.0 时,在 1350 ℃ 烧结后的熟料主要由 12CaO·7Al₂O₃、2CaO·Al₂O₃·SiO₂ 和 2CaO·SiO₂ 组成。熟料中 12CaO·7Al₂O₃ 的含量随着 Na₂O 的增加而增加, 2CaO·Al₂O₃·SiO₂ 的含量随着 Na₂O 的增加而降低。Na₂O 在 12CaO·7Al₂O₃ 中形成固溶体,增加了其单位晶胞体积。 DSC 分析表明,Na₂O 不仅促进了 12CaO·7Al₂O₃的形成,而且使 C₁₂A₇的形成温度降低了 30 ℃。烧结熟料中的 氧化铝溶出性能随着 Na₂O 的增加而大幅度提高。

关键词: CaO-Al₂O₃-SiO₂系; Na₂O; Al₂O₃; 12CaO·7Al₂O₃; 烧结; 溶出

(Edited by YANG Hua)