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Fig. 1 Schematic diagram of mining inclined orebody by panel upward backfill mining method
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Table 2 Correspondence table of exposure time and time
factor T

Time factor, T

Wall exposure time

0'<10 0'>10
>12 months 0.2 0.3
5-12 months 0.3 0.5
3-5 months 0.5 0.8
<3 months 0.8 1
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Fig. 2 Numerical calculation model: (a) N6-7# stope; (b) 2094N stope
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Table 3 Mechanical parameters of rock mass and backfilling

Parameter p/(kg-m™) K/GPa F_,/MPa 0/(°) G/GPa T/MPa
Orebody of 2094N 3500 14.5 3 60 8.75 7.9
Orebody of N6-7# 2500 9 0.3 30 4.5 1.2

D,d’ 2720 10.1 3.05 36 5.75 1.6
D,t* 2700 8 0.32 47 44 1.5
Backfilling 2200 5.12 0.45 30 2.57 0.8
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Table 4 Statistical results of geometry and rock mass properties of four stopes

Hanging wall rock

Stope number Height/m Span/m
Rock Length/m Slant height/m  Dip angle/(°)
Sh209#S 12 D,d" 40 17 45 15
Sh209#N 11.1 D,d 42 14.5 50 18
ShN6-7# 9 D,t* 42 9 90 22
Shn209#S 10.2 D,d" 60 10.2 90 12
RS CEERERIERMIRE
Table 5 Results of rock mass classification and a quality description
Stope surface RMR Class no. Q' Description
Crown of Sh209#S 59 I 5.29 Fair rock
Hanging wall of Sh209#S 58 I 4.74 Fair rock
Crown of Sh209#N 69 II 16.08 Good rock
Hanging wall of Sh209#N 66 I 11.52 Good rock
Crown of ShN6-7# 18 v 0.06 Extremely poor rock
Hanging wall of ShN6-7# 19 A% 0.06 Extremely poor rock
Crown of Shn209#S 32 v 0.26 very poor rock
Hanging wall of Shn209#S 38 v 0.51 very poor rock
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Table 6 Stability number value table
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Fig. 4 Mathews stability synthetic graph considering stable isoprobability lines
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Table 7 Results of stability probabilities and stope stability considered exposure time of four stopes

Stope surface ) N [
Crown of Sh209#S >80% 3.81 >80%
Hanging wall of Sh209#S >80% 5.76 >80%
Crown of Sh209#N >90% 14.47 >90%
Hanging wall of Sh209#N >90% 19.35 >90%
Crown of ShN6-7# 20%>fy)>8% 0.04 <8%
Hanging wall of ShN6-7# 60%>fy)>20% 0.11 60%>f(y)">20%
Crown of Shn209#S 60%>f(y)>20% 0.18 60%>f(y)">20%
Hanging wall of Shn209#S >60% 0.98 >60%
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Fig. 6 Plastic zone distributions of 209#N stope cross section: (a) Only static load; (b) Static and dynamic loads
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Fig. 7 Max principal stress of N6-7# stope cross section: (a) Only static load; (b) Static and dynamic loads
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Table 8 Results of numerical analysis and stope safety evaluation
209#N stope N6-7# stope
. After . After
Parameter Static . Change Static . Change
blasting blasting
load degree loads degree
load load
Vertical displacement of crown center(1#)/mm 15.47 15.49 0.13% 51.64 51.78 0.27%
Vertical displacement of crown left side(2#)/mm 6.03 6.06 0.50% 17.21 17.36 0.87%
Vertical displacement of crown right side(3#)/mm 6.13 6.15 0.33% 21.07 21.37 1.42%
Horizontal displacement of foot wall(4#)/mm 10.62 10.94 3.01% 38.63 38.94 0.80%
Horizontal displacement of hanging wall(5#)/mm 3.30 3.49 5.76% 41.50 41.67 0.41%
Safety degree Good Very poor
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Stability evaluation of inclined orebody stopes by using Mathews
stability synthetic graph and numerical modeling of
static and dynamic loads

ZHANG Zong-guo, SHI Xiu-zhi, QIU Xian-yang

(School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract: The stopes of the inclined orebody expose two surfaces of the crown and the hanging wall after mining,
so the stability analysis of the inclined orebody stopes is one of the most complicated issues of mining. To study
the stability and the stable probability of the inclined orebody stopes, this paper carried out the research through
two methods of Mathews synthetic graph and FLAC3D numerical modeling of static and dynamic loads. First,
four stopes of the inclined orebody in a Lead-Zinc mine were selected, and the rock mass of them was classified
using the RMR and Q' value method. Later, the stable probabilities of the crown and the hanging wall of the four
stopes were obtained by the fitted stable isoprobability line equations and the redrawn Mathews stability synthetic
graph considering the stable isoprobability lines. Finally, the stabilities of the inclined orebody stopes under static
and dynamic loads were studied by adding blasting load to numerical modeling. The results show that exposure
time has a significant impact on the stopes with poor rock mass when considering the influence of exposure time
on stopes stability. The stope stability of the inclined ore body can be analyzed comprehensively through mutual
verification of Mathews stability diagram and FLAC3D numerical simulation.

Key words: rock mass classification; Mathews stability graph; numerical modeling; dynamic disturbance; stable
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