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Fig. 1 Typical optical microscopy of zircon cleavage(a) and fracture surfaces(b), typical atomics force microscopy images

of zirconcleavage(c) and fracture surfaces(d)
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Fig.3 Crystal structure of zircon(a) and coordination structures of Zr(b) and Si(c) atoms
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Table 1 Experimental and theoretical lattice parameters
of zircon crystal
Value a/lA b/A c/A o=p=y
Experimental 6.62 6.62 6.16
Initial 6.61 6.61 5.99 90°

Optimized 6.60 6.60 6.09
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Fig. 4 Section maps of electron density of central Zr
atoms
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Table 2 Atomic mean Bader charges and their ranges,
atomic valence states, and electronic energy of isolated

atoms (E)) in zircon

Mean Valence
Atom Ranges/e E/eV
charge/e state /
Zr 2.695 =2.695 +4 -0.191
Si 3.480 =3.480 +4 -1.993
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Bond orders (BO) and electron overlap

crystal
Bond BO EOP
Si—O0 0.982 0.654
Zr—0O, 0.469 0.350
Zr—O0, 0.262 0.207

23 BAmEEHREETE

R4 o 15 B BB AT i A e AL B (A B
. L4, Si—OMEAENG6.00eV, Zr—O,
5 Zr—O, SR EBEAE 7 7N 1.60 A12.97 eV

ARAERE A UL, Si—OHEER, Zr—O, M
K2, WITNZr—0, . WA EREMTRAE L RE
m VA b 4 688 PR XE R S e K B0/ O Si—On Zr—0
Zr—0,. W7 G HEWT ™ W3 T W R 10 2l IR o
B 5 KT N Si—O0. Zr—04 Zr—0,.

T4 iR s BB B e

Table 4 Weighted bond energy of chemical bonds in
zircon crystal by bond orders

Bond EJeV

Si—O 6.00

Zr—0, 2.87

Zr—O0, 1.60

24 SHAOWRELEN

i PR — RS R A A SR /N e AR - T B
) A o TTERE i T 5 i B2 1) A T 7 )AL o7 5
HEAMRE . K, R EA N R R,
e 551 5 W SR /D (R THT B A A BT o AR 7 AS [
T HA M R B R AR, X DLs s o B e e
FURERT, Wb AR L BB AR i 8 5 T R R
JEE S, T RAE N E A o

B S WO, A AN [R] 77 [ 1) W 18 435 #4 A7 AE
T B A LAY S T AR SR AR R i o A
wr.

(2001l - 541 (200) 77 [l HFFI A /2 Ze 5 Si
PLAE [F]— Wik, &S WriE A AN Ze M A St
FEPVREEI S, WA 41 Zr—O, .

(101)TH - #54 (101)77 [ HEZI R 2 o g HH 3
BEEIPIAN ST, IR Zr, 1ERAEMRE, [F
IS} ] B L ILE T Si/Si, Si/Zr 5 Ze/Ze ( “)7 o
Wrii). % IEF Si—O ML, SR, BOERIR, 1Ak
e W 2 Si/Zr 5 Zo/Ze WiTH « T 2L R N 4 1,
W iA Si—O B 5 I Zr—O, 8t TR N6
I, WM Zr—O, B 4> Zr—O, 6t .

(220)THI » B A7(220) 77 M5 (110) 7 [ AHTE],  HE
B Ze 5 Si LR [F — Wi, {2 Ze tHILK P
KB A L2 N EIAAZ B L, R ] Bt 2 T
BB O SAEF R, —RER 44
Zr—O, ft, “RRWRWNA Zr—O, M Zr—0,
o WA, EERMNAKAENEN.

(L12)1f o 540 (112) 77 [ AP R 2 Zr 5 St
DLAE A —Withr, & — MW A AN Ze A~ Si,
HEA AR IR, B KPS A A Si—O
WA Zr—O, B, 61 Zr—O, B . 75 F8 fo 7 T i
B, mEDWHENERNZ—O0, 8, " UEE—A
B fp i, S 44 Zr—O, B F1 8 A Zr—
O, fk.

QIDI. BAQINTT ARSI, B—KF
Wit & A 14 Si—0, 44 Zr—O, 8, 441 Zr—
O,

(3O T - #4307 M HEFI IR BN E A4,
F LA Ze 55 Si eV [ DL B2 5 19.55°40 H B 9
MHES, WiRmE N E . KT RV, M
R APIAS Si—O 8, 44> Zr—O, AP 4> Zr—O,
T 2R L s ) T SR 5 K

(B12)[fi . #5A(312) 7 s, FE DL Ze
5 Si B eV 1 R A RS o DT T DA A
Si—O##, 61 Zr—O, 8 MM 6 > Zr—O, it W 2 [
g

(332)1f1 . H#iA1(332) 77 IMHEFIFAE, FELLZr
5 Si e~ IR AR . EHKF 7 D)
L 4 4 Si—Of#k, 84> Zr—O, A1 4> Zr—0,
BT R S5 .

MNBA b 5%5F 2% s TR BT R 5 4 () 2 BT T 6, ARV
N[ f TR 7 1) R AE AR B BT L AL AR TR], X
SO [ I AE W 20 - A A B i b RS AE
[F]— I, e R IR Rl T . SR A i 2
SRS W LS54k - B U A 45 G Be 0 95 IR R T K
YR IXTE B FEE BB T AR 2



BREHSH

5y, A TR RE SR PRI LR DR 1451

Broken surface

Crystal plane

5 AN (7] T4 R & i R D 3R o o

Fig. 5 Different crystal planes and broken surface structures of zircon
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Table 5 Calculated surface properties for typical cleavage surfaces

Crystal plane Unit area, A/nm? - Number of broken bond Db/nm_2 Esur/(eV'nm'z) Sc/(eV-nm_z)
Si—O0 Zr—0, Zr—0,

(101)Si/O 0.140 2 0 2 28.6 17.9 108.9
(101) 0.140 0 2 4 42.9 15.6 86.9
(200) 0.198 0 0 4 20.2 8.2 324

(112)Si/0 0.259 2 2 6 38.6 21.9 105.6
(112) 0.259 0 4 8 46.3 22.9 93.7
(312) 0.381 2 6 6 36.7 19.3 101.9
(301) 0.316 2 4 2 253 16.1 84.5
(332) 0.473 4 8 4 339 232 112.9
(220) 0.140 0 4 0 28.6 11.4 82.1
(211) 0.247 1 4 4 36.4 19.3 96.6

26 /AN [FIH B 5 0 A e T D SR B PR e 4
Table 6 Rank of breaking difficulty of a crystal plane

with different rules

Breaking difficulty rank
D, Bt
(200) 10 10
(220)
(301)
(101)
(112)
(211)
(312)
(112)Si/0
(101)Si/O
(332)

Crystal plane

s

[ee)
—_—
(e}

AN N W kR = NN O
— AN W kA W DD O
— N W R LN N 0 O

(301).  (10D)Si/O.  (211).  (312).  (112)Si/O-
(112) (332); dm [ Wr 8 6e S, /N 2R HEF A,
(200). (220). (301). (101). (112). (211), (312)-
(112)Si/0. (101)Si/O+ (332).

XSS HE 7 R A 2R W B A SR (200),  (220) i
(301) ShTHIAR 78 S AR EE,  (112)Si/O TH UK 2 .

ERAEXF(101) (112)« (101)Si/O A1(332) HE
JEBT AR X 5o KRAE 2.4 15 40 BT, IX Lk g T
PRAN T LT T ARAR 22K, [ B 2 AN [ 1 A 22 B 2
B AR E AE AR R R B SCRAER . W
(332) T FH D, ¥ U] 2 (0 5 e P88 T 5 T 22 11 5
Wi, AE(LOT) I U v il 1 Wi Zr—O BT e e .

7 R 2% BB AR AR 25 S5 48] 1) 3R THI fie S ) (At A 2
FRIBT RPN BEE, AL LA TRHT S AR T RE AL
AR, ARAL T (101)SI/O T W E R, S5
AT T (112 T ) W R4 0 5

MR 6 R u k1, RMEMAEEN TERAER
W 2R T T INT ECHEAR BIVE . R RE A 75 HE kT
USRI IR BT R RE B, FER TR
THOL AL IR R MR R E M. Fik, £/
PR 2 b TR WT 400 5 FE I, S, AT 381

32 MmEMNHEEESSTYRERMNME

Pl 6 Fitos >y i T DT 2R i 85 P S, PN T 2845 5 12 D,
LR Re 2 MBIA MM, A R B S
K Ae B A BT — 8.

H &l 6(a)r] W, FTHAeS D, FAHCPE R 2,
R*=0.3022, FHOCHEEAK . 31X 150 BH Wy SR 6 2 B o v
FHF VP 52 2 ik R AR SR T S B % e 2R 0 5
HE 6(b) AT W, 45 B HTA dhTH R T AE 5 S, AR K
PRI, R MER R (R=0.7132). fERFHEH 6
(101)Si/0 5 (112)Wr KT By, AHPE RT3 — P4 &
2 R=0.8369. ZERFKH, 53 1B, #
T RE5 AR SCHR S, 732 A D 52 W 4 T 5th 74 5
RSN, TH AR DG IR 2% P&t BRI R T 25 3 3L
FHIHE AR .

H I 6(c) T ., £E(101)S/O B i i L 1 Si—
ORI, Wrdd)5 R Si i+ HIEE, SiliTm
IEVY A ZE R R . AL S R (101)S1/0 W21 1)
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Fig. 6 Linear fitting correlation analysis plots of £, —D,(a)and E_ S (b) and initial and final optimized surface structures

surf

of zircon (101)(c) and (112)(d), respectively
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Crystal plane fracture energy and its fracture mechanism:
A case study of zircon

HE Jian-yong, WU Yun-xia, SUN Wei, GAO Zhi-yong

(Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral
Resources, School of Minerals Processing and Bioengineering, Central South University,
Changsha 410083, China)

Abstract: Exploring the mechanism of crystal fracture and crystal plane exposure is important for accurately
controlling the surface properties of minerals. The fracture mechanism of mineral crystals with one type of fracture
bond can be accurately analyzed by the surface fracture bond density D, method proposed by the author earlier.
However, for crystals with two or more types of broken bonds, new methods need to be explored. Taking zircon
crystal with two types of fracture bonds as an example, this paper proposes a method of crystal plane fracture
energy (S,) based on bond order weight by using first principles calculation and Bader charge analysis, which can
quickly evaluate the degree of fracture difficulty of zircon along each facet and reveal the rules of surface
exposure. The calculation and analysis of crystal chemical bond energy show that the size of chemical bond energy
in zircon crystal is Si—O (6.00 eV) >Zr—O, (2.87 eV) >Zr—O0; (1.60 V). The calculation of fracture energy
shows that zircon crystals are most easily fractured along the (200) plane, so the (200) plane is the most easily
exposed. In addition, we found a good correlation between the S, and the surface energy, and the crystal plane
fracture energy can be used to quickly evaluate the stability and reactivity of the facet under certain conditions.

Key words: zircon; crystal plane fracture energy; broken bonds density; surface reactivity
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