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Fig. 1 XRD patterns and microstructures of (FeCoNiCr),,,_ Mn (x=0, 12, 20) alloys: (a) XRD patterns of (FeCoNiCr),,,_ Mn_
(x=0, 12, 20) before annealing; (b) SEM image of Mn0 (Unannealed); (c¢) SEM image of Mn12 (Unannealed); (d) SEM image
of Mn20 (Unannealed); (¢)SEM image of Mn12 (annealed at 650 ‘C for 1 h); (f) EBSD phase and inverse pole figure (IPF)

maps of Mn12 (annealed at 650 “C for 1 h)

TR AV AN M (I NSO e I 2282 7 o S O % YA AN AT
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19.4%. HE 2(0) 7] W, /N B A0 bR

AP A AE BCC AR DX I, /Iy B2 b SR AL H 27
A Ve R B EEE I AR R BLFCC
HH AP B K A BE it S A AE VR 2 2R AR S5, & AR
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RIFCCAH i RLAF DLAHAGI o 38 K 28 8 S 0] b
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Fig. 2 Phase distribution and grain boundary distribution figures of Mn12 alloy (annealed at 650 ‘C for 1 h): (a) Phase

distribution; (b) Grain boundary distribution figure (red is subgrain boundaries); (c¢) Grain orientation spread of BCC phase

and FCC phase
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X 5 B 2(c) B db R0 A 22 3 A B A5 R — 2, |/
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B3 Mnl2#4:(650 ‘CiB-K 1 h)ff EDS M1 H 45
Fig. 3 EDS mapping results of Mn12 alloy (annealed at 650 ‘C for 1 h): (a) SEM image; (b) Ni; (c) Mn; (d) Co; (e) Cr;
(f) Fe
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Pole Figures
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Fig. 4 Pole figures of Mn12 alloy (annealed at 650 “C for 1 h): (a) BCC pole figures; (b) FCC pole figures

Mnl2 &6 BARAENLEE I ERe, Ea R & N36.95%: iR 1698.77 MPa, % Mn0 &
% 6,4 953.56 MPa, 5 Mn0 & &AMHW, &5 T @5 1 26.5%: WP N 37.66 MPam'?, %
23.22%; MPRILESEE 0, 08 1857.13 MPa, WiZLR.  Mn0 & 4385 1 27.62%. Mnl2 & 44 650 ‘CiB K
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Fig. 5 Compressive stress—strain curves of Mn0, Mn12,
Mn20 and Mn12 (annealed at 650 C for 1 h) alloys

L h 5t Res Bl — 87, EZ MR, o M
o SRR A KBS T, Wi B AW 2L A8 5y
il 49.45 MPa-m'? 1 41.03%, [CiB kAT T
31.31% 1 11.04%: 5 H B 2 | 9AE B i) 2% 1
AICTFeCoNiHEA"AHLE, Mn12 & 4 B BR 70 58
FEoug K, H WY RN IR A T 2547%: 5
HADRABA % JF & 1) 40 oK & 46 50 3 5%
CoCrFeNiMnHEA A Et, Mn12 & 4 /8% R $t & 5%
JEHR 151 42.95%, WriR AR $e iy 17.23%; 5 JT4ER0

&1 JUMHEAs & &S0 A EREXT EL

TR AU B 4 A R A5 B8 e 25 1 AR I LUR K
T2 % K Bk CoCrFeNiMn HEA AL, P+
W PR BT 5 FE AR, 17 Min12 & 4 (0 W 24 0 AR 38 v
T 193.07%; HEFELEPRAH PG S+
HLSE B T e 4577 il 4% (1) Fe,gNiygMn, Cr,Cug Fl
Fe,NiyMn, CroAl, B Fll HEAs & & AH LG, = 4
JE MR R EE . RBR BT R 5 AR ZE AR, T Mn12 & 4
(1% Wt 24 . A% 5 5 79 3 A B2 B R T 6% AT 57%:;
5 WU SR o g 55 B T ke 45k A
Fe, Ni;Co;Mn, HEA AHEG, 1 2 A PR it s i FE AH
I, M Mnl2 & 4 B W RN AR 5] =T 23.58%.
Mnl2 & 44650 CiB K1 h 5 R 2261
fE, X FEEIHNR T E Fe 28 AHAIHRALIE FH AR K
T2 R KRR A AR

K 6 FT7s N Mn12 4 4:(650 ‘CiE k1 h)y# FCC
AHATBCC AHAFAE . HI P 6(a) ] WL, AR 2H 23 rp i
JZHE(SP)AEE TGN, R RA — T A, AL
BRSO RS AE AR 15 R, B 1 AR T AL % AR
NERAR, G i IR R [ 6(b) R (o) AT
NI BCCAHI AR RFIE . FHEI6(b) AT ., AmkL
W) & 43~ AT T () db s I 6(c) IR Al &
BCCHHAE YO J71a) C111) SR AN B, SR iRy
1.43. MPTARL W BCCHEE, fihiEfi@y
RAAE (110} {112} BE {123} WA —Fif | 467
BAE FIR = AP Ry LR B 7 i B,

Table 1 Mechanical properties of several HEAs at room temperature prepared by different technologies

Flexural Fracture Yield Ultimate ) )
. Engineering
Alloy Process strength/  toughness/ strength, compressive i, &% Ref.
stain, &
MPa MPa-m'? o/MPa strength, o, /MPa °
MnO (Unannealed) 1342.88 29.51 773.86 - -
Mn12(Unannealed) 1698.77 37.66 953.56 1857.13 36.95% .
Vacuum hot his
Mn20 (Unannealed) . 1565.86 39.69 738.88 1707.26 37.03%
pressing work
Mn12 (Annealed at
. 1573.69 49.45 873.65 1813.98 41.03%
650 °C for 1 h)
. Vacuum arc
AlCrFeCoNi . - - 1250.96 2004.23 32.7 [18]
melting
ODS CoCrFeNiMn MA - - - 1269 35 [19]
Bulk CoCrFeNiMn MA+SPS - - - 1987 14 [20]
Fe, Niy;Mn, Cr,Cu, SPS - - 716 1908 38.6 [21]
Fe, NiyMn, Cr,Al, SPS - - 1180 2111 26.1 [21]
Fe;,Niy,Co,,Mn,, SPS - - 1164 1806 332 [22]
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Fig. 6 Characteristics of FCC and BCC phases in Mn12 alloy (annealed at 650 “C for 1 h): (a) Stacking faults in FCC
phase; (b) Inverse polar figures (IPF) of BCC phase in Y|, direction; (c) Inverse polar diagram of BCC phase

ZAT NP Z N RS P Mnl2 B & 4R
KALFLJE, BCCAHITE (111) 18 J7 1) _E IR AR X 4
s, BN EEBARTE 5 T KA, a4 AE
e R e B 2 B

Xf - (FeCoNiCr),pMn, & 4, Ni & & & &,
HEPRZHERE(SFE)&CR,  FIHE S Nif¥) SFEfH KA K
(=125 mI/m?®h . Hy AT L, R AT 4R G 3
SFE fSZm K, 384 n B A MK SFE 1 43 5/ B
49 7 SFE [R5 4 5 HEA 8 i 28 E & 15 FE As
. Bk, EADIF , B Mo & BRI, Ni
B B BRI FCCAHFTE X d 2> B BUIKY SFE, 1B
AR ER G A, W 1(e)FTan. 4 SFE B
I, HEAs RILH T 5505 R R 4P, B
% SFE [kl , AR T AL 22 AL B e A8 A8 T
AR, RN T AAR GG AR RE ), JRIRAL T AR E
(N CREAUE,  ATIB e 7 e B AT,

*x

3 g

1) (FeCoNiCr),,, Mn (x=0, 12, 20) & & &
900 C H MBS J5, Mn0 A & MM 208
FCC ¥H [ %A, Mn12 Al Mn20 & 44 FCC/BCC
RAHH LR, FET gk e R &9, Mnl2 &
%22 650 CiR K 1h JF MG EIAL,  HILER K2R
HA,

2) (FeCoNiCr),,, Mn (x=0, 12, 20) & 4 ¥R I
AR A RE, Mnl2 &44 650 CiEB-K 1 h/g
BABRAENLEE 15 EEE, R46E IR s h 873.65
MPa, IR HTESRE N 1813.98 MPa, Wi w45 Ky
41.03%, %5 i 58 N 1573.69 MPa, W L #11E Ky
49.45 MPa'm'?,

3) 1B K JE Mnl2 & &R LT 28R,
XA PEF BCC AH I 28 — A0 5 A0 A FH R AL 1 BoW
ML, LGB KOG FCCAH AR HE R 2 4 e X 2R
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Microstructure and mechanical properties of (FeCoNiCr),,,_.Mn,
non-equiatomic high-entropy alloys

ZHAO Kun', Al Tao-tao"?, FENG Xiao-ming" 2, WANG Pei-jin', BAO Wei-wei"?, LI Wen-hu"?,
KOU Ling-jiang"?, DONG Hong-feng" %, ZOU Xiang-yu" %, DENG Zhi-feng" %, ZHAO Zhong-guo"?

(1. School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;
2. National & Local Joint Engineering Laboratory for Environmental Protection Technology for Comprehensive

Utilization of Slag, Shaanxi University of Technology, Hanzhong 723000, China)

Abstract: The Non-equiatomic (FeCoNiCr),,,_ Mn (x=0, 12, 20) high-entropy alloys were studied. The results
indicate that (FeCoNiCr),,,_Mn_ alloys containing Mn prepared by vacuum hot pressing sintering present dual-
phase microstructure compose of the face centered cubic (FCC)/body centered cubic (BCC) phases, in which a lot
of nanometer intermetallic compounds precipitate. The (FeCoNiCr)eMn,, alloy after annealed at 650 C for 1 h
has the best comprehensive mechanical properties, with compressive yield strength of 873.65 MPa, ultimate
compressive strength of 1813.98 MPa, fracture strain of 41.03%, flexural strength of 1573.69 MPa and fracture
toughness of 49.45 MPa-m'? The excellent comprehensive mechanical properties are attributed to the second
phase strengthening effect of BCC phases and a large number of annealing twins form in the low stacking fault
energy region. The design concept of TWIP-assisted non-equiatomic dual-phase high-entropy alloys can provide a
new idea for the composition design of high-entropy alloys.

Key words: high-entropy alloy; microstructure; mechanical properties; second phase strengthening; annealing twin
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