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摘 要：设计开发了一种非等原子(FeCoNiCr)100−xMnx(x=0, 12, 20)高熵合金的制备工艺。结果表明：采用真

空热压烧结技术制备的含Mn型(FeCoNiCr)100−xMnx合金由面心立方(FCC)和体心立方(BCC)相组成，其中有

大量的纳米级金属间化合物析出。经650 ℃退火1h后，(FeCoNiCr)88Mn12合金的综合力学性能最佳，压缩

屈服强度为873.65 MPa，极限抗压强度为1813.98 MPa，断裂应变为41.03%，弯曲强度为1573.69 MPa，断

裂韧性为49.45 MPa·m1/2。优异的力学性能归因于BCC相的强化作用以及低堆垛层错能区域所形成的大量

退火孪晶。孪晶诱导塑性(TWIP)辅助的非等原子双相高熵合金设计理念，为高熵合金成分设计提供了一种

新的思路。
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高熵合金(HEAs)因其独特的成分构成、特殊的

组织结构及优异的力学性能而备受研究人员的广泛

关注[1−2]，被认为是一类极具应用潜力的新型结构

材料，在核工业、航空航天、汽车等领域具有广阔

的应用前景。但是，HEAs依然存在一些科学问题

亟待进一步解决，例如，室温下具有单相FCC结构

的HEAs[3]表现出优异的可塑性但强度不高，而单

相BCC结构的HEAs[4]具有高强度但塑性较低。

众所周知，通过调节HEAs中不同合金元素占

比，往往会导致HEAs的晶体结构、微观组织和力

学性能发生显著的变化。因此，通过成分设计有望

实 现 合 金 性 能 最 优 化 。 例 如 ， 非 等 原 子

CoCrFeNiMo0.3 HEA[5]通过形成硬而脆的金属间化

合物实现了增强效果，抗拉强度高达 1.2 GPa，应

变为19%；CoCrFeNiTi0.2 HEA[6]通过两种成分相似

的相干纳米沉淀相而达到增强目的，在室温下具有

700 MPa 和 1.2 GPa 的屈服强度和极限抗拉强度，

应变达 36%；CoCrFeNiCu4 HEA[7]具有富铜和富

CoCrFeNi 的双 FCC 相结构，轧制后屈服强度达

890 MPa；Fe67CoCrMnNiHEA[8]具有BCC/FCC双相
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结构，拉伸屈服强度和极限抗拉强度分别为 148

MPa和604 MPa，断裂应变高达61%。随着研究的

不断深入，除了成分设计外，更多的性能优化方法

脱颖而出，例如可以通过孪晶诱导塑性(TWIP)效

应[9]、共晶HEAs[10]、细晶强化、固溶强化[11]、相

变诱发塑性(TRIP)效应[12]、第二相强韧化[13]等工艺

进一步改善HEAs的综合性能。

本文以 FeCoCrNiMn HEA 为研究对象，选择

Mn作为成分设计中可调节的合金元素。由于Mn

原子半径在五种元素中最小，因此改变其含量可能

会对合金结构和性能产生积极的影响。LI等[14]研究

发现，Mn含量在相组成中发挥了重要作用，可以

调节相稳定性以激活特定的置换转化机制，例如

TWIP或TRIP效应。鉴于此，本文设计了一类非等

原子 (FeCoNiCr)100−xMnx(x=0, 12, 20)HEAs，采用

“球磨干混+真空热压烧结+退火”工艺实现HEAs

的制备，研究合金的微观组织与力学性能。

1 实验

本实验以商用Fe、Co、Cr、Ni、Mn金属粉末

(纯度≥99.9%，平均粒度为75~150 μm)为原料，设

计了三种不同成分的 (FeCoNiCr)100−xMnx(x=0, 12,

20)高熵合金，即 FeCoNiCr、 (FeCoNiCr)88Mn12、

(FeCoNiCr)80Mn20， 分 别 简 称 为 Mn0、 Mn12、

Mn20。采用干法球磨对粉末进行混合，球磨机转

速为 150 r/min，混粉时间为 4 h。利用真空热压烧

结系统进行烧结，从室温以 10 ℃/min的升温速率

升温至 900 ℃，然后调节压力至 25 MPa，并在

900 ℃保温30 min，最后随炉冷却至室温。退火工

艺是将烧结后的样品在 650 ℃退火 1 h，然后随炉

冷却至室温。

采用配备能谱仪(EDS)和电子背散射衍射仪

(EBSD)的扫描电子显微镜(SEM)观察样品的微观结

构和化学成分。用X射线衍射仪(XRD)进行样品的

相组成鉴定。显微结构观察之前，将样品打磨抛光

后，用稀释的王水进行腐蚀。

采用三点弯曲法测试合金的弯曲强度和断裂韧

性，样品尺寸为 25 mm(长)×4 mm(宽)×8 mm(高)，

跨距为 20 mm。断裂韧性样品切口深度为 0.4W(其

中W是试样宽度)。测量3次取其平均值。

弯曲强度的计算公式为：

σb =
3PL
2bh2

(1)

式中：σb是强度(MPa)；P是试样破裂或失效时的

最大载荷(N)；L是跨度(mm)；b是宽度(mm)；h是

试样高度(mm)。

断裂韧性的计算公式为：

K =PS/(BW 3/2 )´ f (a/W ) (2)

式中：S是跨度；B是试样厚度；W是试样宽度；a

是裂纹长度。f(a/W)的计算公式为：

f (a/W )={3(a/W )1/2 [1.99 - (a/W )(1 - a/W )´
(2.15 - 3.93a/W + 2.7(a/W )2 )]}/

[2(1 + 2a/W )(1 - a/W )3/2 ] (3)

压缩强度测试样品为圆柱状，样品尺寸为 5

mm(直径)×8 mm(高)。测量 3次压缩强度取其平均

值。压缩工程应力−应变的计算公式为：

σ =P/A (4)

ε =Dl/l (5)

式中：A 是原始截面积；Dl 是伸长量； l 是原始

长度。

2 结果和讨论

2.1 (FeCoNiCr)100−xMnx(x=0, 12, 20)合金的微观

组织

图1所示为(FeCoNiCr)100−xMnx(x=0, 12, 20)合金

的XRD谱和微观组织。图1(a)所示为真空热压烧结

后合金的XRD谱。由图1可见，Mn0合金烧结后主

要为FCC单相固溶体，Mn12和Mn20合金烧结后

由FCC/BCC双相组成。图 1(b)、(c)和(d)所示分别

为真空热压烧结后三种合金的微观组织。由图 1

(b)、(c)和(d)可见，Mn0、Mn12和Mn20合金微观

形貌差别较大，Mn0合金主要为 FCC组织，同时

有大量的细小金属间化合物粒子析出；Mn12 和

Mn20合金主要为FCC/BCC双相组织，随Mn含量

的增大，BCC相含量及尺寸不断增大，同时有大量

的纳米级金属间化合物(白色亮点) 析出。图1(e)所

示为Mn12合金(650 ℃退火1 h)的微观组织。由图

1(e)可见，纳米级金属间化合物颗粒明显长大，同

时出现了退火孪晶。图 1(f)所示为 Mn12 合金

(650 ℃退火1 h)的晶粒取向分布图。由图1(f)可见，
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晶粒尺寸分布不均匀，经统计平均晶粒尺寸约为

4.59 μm，晶粒呈随机取向分布。

图 2所示为Mn12合金(650 ℃退火 1 h)的相分

布与晶界分布图。由图 2(a)可见，Mn12合金主要

由 FCC 和 BCC 两相组成，含量分别为 74.3% 和

19.4%。由图 2(b)可见，小角度晶界用红色标记，

基本分布在BCC相区域，小角度晶界对优化组织

和调节力学性能具有重要的作用；同时还发现FCC

相中的大角度晶界中存在许多孪生结构，各晶粒的

孪生特征不同，呈现出二次或者三次对称性。孪生

结构是FCC相在退火过程中形成的，其形成使原粗

大的FCC相晶粒得以细化[15]。退火孪晶界两侧晶粒

图1 (FeCoNiCr)100−xMnx(x=0, 12, 20)合金的XRD谱和微观组织

Fig. 1 XRD patterns and microstructures of (FeCoNiCr)100−xMnx(x=0, 12, 20) alloys: (a) XRD patterns of (FeCoNiCr)100−xMnx

(x=0, 12, 20) before annealing; (b) SEM image of Mn0 (Unannealed); (c) SEM image of Mn12 (Unannealed); (d) SEM image

of Mn20 (Unannealed); (e)SEM image of Mn12 (annealed at 650 ℃ for 1 h); (f) EBSD phase and inverse pole figure (IPF)

maps of Mn12 (annealed at 650 ℃ for 1 h)
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具有特殊的位向关系，可以阻碍位错滑移。与普通

高角度界面相比，退火孪晶界由于原子排列规则、

畸变小、界面能低、稳定性好，能够改善合金的抗

氧化、抗腐蚀、抗裂纹扩展等性能[16]。图2(c)所示

为晶粒取向分布图。由图2(c)可见，BCC相晶粒取

向大部分小于5°，为小角度晶界或亚晶界；FCC相

晶粒取向部分小于5°，大部分分布于30°~60°之间，

为大角度晶界。

Mn12合金(650 ℃退火 1 h)的EDS面扫描结果

如图 3所示。由图 3可见，除 Fe团聚形成富 Fe的

BCC相外，Ni、Mn、Co、Cr元素分布相对较为均

匀，形成了FCC相的基体，其中Ni和Mn由于具有

最低的混合焓[17]，容易聚集，而Co、Cr呈均匀分

布，即Mn12合金(650 ℃退火 1 h)由 FCC相(分为

Ni、Mn聚集区域和其他区域)和富Fe的BCC相组

成，与XRD分析结果一致。

图4所示为Mn12合金(650 ℃退火1 h)的极图。

图 4(a)所示为 BCC 相的极图，从图中可以看出，

BCC相最大织构强度为 3.53，晶粒取向较为明显，

说明晶粒内部存在织构；图4(b)所示为FCC相的极

图，从图中可以看出FCC相的晶粒织构强度范围为

0.59~1.76，晶粒取向性并不明显，说明 FCC相晶

粒取向是随机分布的，晶粒内部织构特征不明显。

这与图 2(c)所示晶粒取向差分布图结果一致，即

BCC相取向差大部分小于 5°，晶粒间取向差角度

小，晶粒取向明显，而 FCC相晶粒间取向差角度

大，呈随机分布状态。

2.2 (FeCoNiCr)100−xMnx(x=0, 12, 20)合金的力学

性能

图 5 所 示 为 Mn0、 Mn12、 Mn20 和 Mn12

(650 ℃退火1 h)合金的压缩应力−应变曲线。由图5

可知，本实验所制备的 Mn0、Mn12、Mn20 和

Mn12合金均表现出优异的压缩性能。Mn0合金在

工程压缩应变达 43%时未断裂，表现出优异的塑

性。Mn元素的加入改善了合金的力学性能，其中

图2 Mn12合金(650 ℃退火1 h)的相分布与晶界分布图

Fig. 2 Phase distribution and grain boundary distribution figures of Mn12 alloy (annealed at 650 ℃ for 1 h): (a) Phase

distribution; (b) Grain boundary distribution figure (red is subgrain boundaries); (c) Grain orientation spread of BCC phase

and FCC phase
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Mn12合金具有最佳的综合力学性能，压缩屈服强

度 σs 为 953.56 MPa，与 Mn0 合金相比，提高了

23.22%；极限抗压强度σbc达1857.13 MPa，断裂应

变为36.95%；弯曲强度为1698.77 MPa，较Mn0合

金提高了 26.5%；断裂韧性为 37.66 MPa·m1/2，较

Mn0合金提高了27.62%。Mn12合金经650 ℃退火

图3 Mn12合金(650 ℃退火1 h)的EDS面扫描结果

Fig. 3 EDS mapping results of Mn12 alloy (annealed at 650 ℃ for 1 h): (a) SEM image; (b) Ni; (c) Mn; (d) Co; (e) Cr;

(f) Fe

图4 Mn12合金(650 ℃退火1 h)的极图

Fig. 4 Pole figures of Mn12 alloy (annealed at 650 ℃ for 1 h): (a) BCC pole figures; (b) FCC pole figures
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1 h后的性能得到进一步提升，在弯曲强度、σs和

σbc降低幅度不大的情况下，断裂韧性和断裂应变分

别为 49.45 MPa·m1/2 和 41.03%，比退火前提高了

31.31% 和 11.04%；与用真空电弧熔炼制备的

AlCrFeCoNiHEA[18]相比，Mn12合金的极限抗压强

度 略 低 ， 但 断 裂 应 变 提 高 了 25.47%； 与

HADRABA 等[19] 开 发 的 纳 米 氧 化 钇 增 强

CoCrFeNiMnHEA相比，Mn12合金的极限抗压强

度提高 42.95%，断裂应变提高 17.23%；与 JI等[20]

通过机械合金化和放电等离子烧结技术并辅以退火

工艺制备的大块状CoCrFeNiMn HEA相比，两者

极限抗压强度相近，而Mn12合金的断裂应变提高

了 193.07%；与夏泽邦等[21]采用“机械合金化+放

电等离子烧结法”制备的 Fe28Ni28Mn28Cr8Cu8 和

Fe28Ni28Mn28Cr8Al8两种HEAs合金相比，三者压缩

屈服强度、极限抗压强度相差不大，而Mn12合金

的断裂应变与后两者相比分别提高了 6%和 57%；

与 WU 等[22] 通 过 放 电 等 离 子 烧 结 法 制 备 的

Fe30Ni30Co30Mn10HEA 相比，两者极限抗压强度相

近，而 Mn12 合金的断裂应变提高了 23.58%。

Mn12合金经650 ℃退火1 h后表现出优异的综合性

能，这主要归因于富Fe第二相的强化作用和退火

工艺形成的大量退化孪晶。

图 6所示为Mn12合金(650 ℃退火 1 h)中 FCC

相和BCC相特征。由图6(a)可见，微观组织中堆垛

层错(SF)非常清晰，层错具有一定的宽度，使得位

错的交叉滑移和爬升变得困难，塑性变形机制转变

为孪生，对提高强度和塑性有利[23]。图6(b)和(c)所

示分别为BCC相的织构特征。由图6(b)可见，晶粒

取向部分平行于(111)晶面；由图 6(c)亦可看出，

BCC相在Y0方向〈111〉织构相对较强，织构强度为

1.43。众所周知，对于BCC相合金，位错滑移通常

发生在{110}、{112}或{123}的任一平面上；当位

错在上述三个平面上沿着共同的〈111〉方向滑动时，

表1 几种HEAs合金的室温力学性能对比

Table 1 Mechanical properties of several HEAs at room temperature prepared by different technologies

Alloy

Mn0 (Unannealed)

Mn12(Unannealed)

Mn20 (Unannealed)

Mn12 (Annealed at

650 ℃ for 1 h)

AlCrFeCoNi

ODS CoCrFeNiMn

Bulk CoCrFeNiMn

Fe28Ni28Mn28Cr8Cu8

Fe28Ni28Mn28Cr8Al8

Fe30Ni30Co30Mn10

Process

Vacuum hot

pressing

Vacuum arc

melting

MA

MA+SPS

SPS

SPS

SPS

Flexural

strength/

MPa

1342.88

1698.77

1565.86

1573.69

−
−
−
−
−
−

Fracture

toughness/

MPa·m1/2

29.51

37.66

39.69

49.45

−
−
−
−
−
−

Yield

strength,

σs/MPa

773.86

953.56

738.88

873.65

1250.96

−
−

716

1180

1164

Ultimate

compressive

strength, σbc/MPa

−
1857.13

1707.26

1813.98

2004.23

1269

1987

1908

2111

1806

Engineering

stain, ε/%

−
36.95%

37.03%

41.03%

32.7

35

14

38.6

26.1

33.2

Ref.

This

work

[18]

[19]

[20]

[21]

[21]

[22]

图5 Mn0、Mn12、Mn20和Mn12 (650 ℃退火1 h)合金的

压缩应力−应变曲线

Fig. 5 Compressive stress− strain curves of Mn0, Mn12,

Mn20 and Mn12 (annealed at 650 ℃ for 1 h) alloys
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该行为被称之为“铅笔滑动”[24]。Mn12合金经退

火处理后，BCC相在〈111〉滑移方向上织构相对较

强，因此位错滑移变形易于发生，从而使合金具有

高强高韧力学性能。

对于 (FeCoNiCr)100−xMnx 合金，Ni 含量愈高，

堆垛层错能(SFE)愈大，可能与Ni的SFE值大有关

(γNi=125 mJ/m2[25])。由此可见，调节组成元素对

SFE的影响较大，增加具有低SFE的成分或减少具

有高SFE的成分会导致HEA通过孪生显性过程变

形。因此，在本研究中，随着Mn含量的增加，Ni

含量较低的FCC相所在区域会具有较低的SFE，退

火孪晶更容易产生，如图 1(e)所示。当 SFE 较低

时，HEAs表现出了强度和塑性的良好平衡[26]。随

着SFE的减少，变形机制会从位错滑动转变为变形

孪生，有效地增加了位错储存能力，并提供了稳定

的加工硬化源，从而提高了强度和塑性[27]。

3 结论

1) (FeCoNiCr)100−xMnx(x=0, 12, 20) 合 金 经

900 ℃真空热压烧结后，Mn0 合金的微观组织为

FCC单相固溶体，Mn12和Mn20合金为FCC/BCC

双相组织，并析出纳米级金属间化合物，Mn12合

金经650 ℃退火1h后织构得到优化，出现退火孪晶

组织。

2) (FeCoNiCr)100−xMnx(x=0, 12, 20)合金均表现

出优异的力学性能，Mn12合金经650 ℃退火1 h后

具有最佳的综合力学性能，压缩屈服强度为873.65

MPa，极限抗压强度为 1813.98 MPa，断裂应变为

41.03%，弯曲强度为 1573.69 MPa，断裂韧性为

49.45 MPa·m1/2。

3) 退火后Mn12合金表现出优异的力学性能，

这归因于BCC相的第二相强化作用和优化的微观

组织，以及退火后FCC相中低堆垛层错能区域孪晶

图6 Mn12合金(650 ℃退火1 h)中FCC相和BCC相特征

Fig. 6 Characteristics of FCC and BCC phases in Mn12 alloy (annealed at 650 ℃ for 1 h): (a) Stacking faults in FCC

phase; (b) Inverse polar figures (IPF) of BCC phase in Y0 direction; (c) Inverse polar diagram of BCC phase
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诱导塑性效应(TWIP)；与此同时，BCC相中与滑

移方向平行的晶粒取向亦是退火后Mn12合金具有

高强高韧力学性能的原因之一。
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Microstructure and mechanical properties of (FeCoNiCr)100−xMnx

non-equiatomic high-entropy alloys

ZHAO Kun1, AI Tao-tao1, 2, FENG Xiao-ming1, 2, WANG Pei-jin1, BAO Wei-wei1, 2, LI Wen-hu1, 2,

KOU Ling-jiang1, 2, DONG Hong-feng1, 2, ZOU Xiang-yu1, 2, DENG Zhi-feng1, 2, ZHAO Zhong-guo1, 2

(1. School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;

2. National & Local Joint Engineering Laboratory for Environmental Protection Technology for Comprehensive

Utilization of Slag, Shaanxi University of Technology, Hanzhong 723000, China)

Abstract: The Non-equiatomic (FeCoNiCr)100−xMnx(x=0, 12, 20) high-entropy alloys were studied. The results

indicate that (FeCoNiCr)100−xMnx alloys containing Mn prepared by vacuum hot pressing sintering present dual-

phase microstructure compose of the face centered cubic (FCC)/body centered cubic (BCC) phases, in which a lot

of nanometer intermetallic compounds precipitate. The (FeCoNiCr)88Mn12 alloy after annealed at 650 ℃ for 1 h

has the best comprehensive mechanical properties, with compressive yield strength of 873.65 MPa, ultimate

compressive strength of 1813.98 MPa, fracture strain of 41.03%, flexural strength of 1573.69 MPa and fracture

toughness of 49.45 MPa·m1/2. The excellent comprehensive mechanical properties are attributed to the second

phase strengthening effect of BCC phases and a large number of annealing twins form in the low stacking fault

energy region. The design concept of TWIP-assisted non-equiatomic dual-phase high-entropy alloys can provide a

new idea for the composition design of high-entropy alloys.
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