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Table 1 Interlaminar distance relaxation of V(100), (110) and (111) surfaces of different thickness

Slab model (100) (110) (111)
(layers) Ad /%  Ad, /%  Ady_ /% Ad\L,I%  Ad, /%  Ad,_ /% Ad\L,I%  Ad, /%  Ad,_ /%
5 -15.83 2.08 -0.48 -5.46 -0.24 -1.33 -3.26 -26.87 -29.10
6 -14.46 -0.34 2.57 -5.59 -0.03 -0.23 -9.99 -16.35 -18.07
7 -13.82 -0.02 2.72 -5.82 0.20 0.11 -28.99 -19.65 2.42
8 -15.39 0.19 2.29 -6.06 0.31 -0.56 -27.15 -21.74 6.99
9 -15.56 -0.10 2.31 -5.81 0.16 -0.10 -19.75 -28.99 6.28
T2 AR K V(100) (110)FI(1T1)Z2 i % 1 e
Table 2 Surface energy of V(100), (110) and (111) surfaces with different thickness
Slab thickness E (100)/eV Eg (110)/eV ESV(11)/eV
5 layers 0.150 0.151 0.122
6 layers 0.150 0.152 0.142
7 layers 0.152 0.152 0.150
8 layers 0.150 0.153 0.147
9 layers 0.150 0.152 0.146
Experiment value”’ 0.163, 0.159
Calculation value®” 0.150 0.150
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Table 3 Stable structure and its parameters of hydrogen

atoms adsorbed on V low Miller exponential crystal plane

Surface  Site E J/eV dy /A dy /A
TS -2.160 1.725  1.725
V(100)  BS -2.826 1.834  1.228
HS  -2.945(-2.97%%) 1.846 0.564
TS -2.083 1.741  1.741
SBS -2.992 1.814  1.044
V(110)
LBS -3.175 1.867  1.087
HS  -3.261(-3.31%%) 1905 1.044
TS -1.997 1.704  1.704
BS -3.015 1.789  0.844
V(111)
FS -2.844 1.755  1.029
H,S -2.586 1.813 0416
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Fig. 2 Hydrogen adsorption on V-Pd(100) surface (Top
position(TS1 and TS2), bridge position(BS1 and BS2), hole
position(HS))
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Table 4 Final stable structure and its parameters of single hydrogen atom adsorbed on V(100) and V-Pd(100) surface

Sample H/V(100) H/V-Pd(100)

site dy /A dyy o /A E,/eV dyypi/A dyy o /A E,/eV
TSI 1.724 1.724 ~2.097 1.623 1.623 -2.021
TS2 4.566 1.583 ~2.003
BSI 1.834 1.219 -2.768 1.743 0.796 -2.503
BS2 3.592 1.125 -2.662
HS 1.831 0.588 ~2.980 2.548 0.443 -2.953
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Fig. 4 Most stable structure model with multiple hydrogen atoms adsorbed on V-Pd(100) surface
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Table 5 Adsorption energy of hydrogen atoms on V(100) and V-Pd(100) surface under different coverage degrees

Ey o€V
Cover degree V(100) V-Pd(100)
TS BS HS TS BS HS
0.5 -2.006 -2.683 -2.996 -1.938 -2.598 -2.972
0.75 -1.808 -2.631 -2.985 -1.742 -2.550 -2.966

1 -1.693 -2.618 -2.978 -1.635 -2.528 -2.969
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Calculation and analysis of
Pd-doped V(100) surface stability and hydrogen permeability

WANG Zhong-min'-2, LIU Zhi-gao', QIN Jia-yao'*, WANG Dian-hui', ZHANG Yan-li',
ZHANG Xiao-hui?, HU Chao-hao', LONG Qian-xin', DU Yong*

(1. School of Materials Science and Engineering,
Guilin University of Electronic Technology, Guilin 541004, China;
2. College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China;
3. School of Materials Science and Engineering, South China University of Technology,
Guangzhou 510640, China;
4. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)

Abstract: The V-based solid solution with BCC structure has good hydrogen permeability and potential
application in hydrogen separation membranes. The first-principles method was used to systematically research the
hydrogen adsorption and permeation mechanism on the Pd-doped V(100) surface, and the influence of hydrogen
coverage on hydrogen adsorption and diffusion was discussed. The calculation results show that Pd preferentially
replaces V atom in the first layer on V(100) surface. The stability of adsorbed H atoms at different positions on the
surface of V-Pd(100) is as follows: hole position>bridge position>>top position. Pd doping reduces the adsorption
capacity of surface hydrogen atoms, which is conducive to the dissociation and association efficiency of hydrogen
atoms. On the Pd-doped V(100) surface, the diffusion energy barrier of hydrogen atoms from the surface to the
subsurface is reduced, which improves the hydrogen permeability. With the coverage of hydrogen atoms
increasing, the ability of hydrogen to adsorb on the surface of V(100) decreases, while the ability to adsorb on the
surface of V-Pd(100) increases. The calculation results of the differential charge density show that the Pd—H bond
is weaker than the V—H bond, so Pd doping can improve the hydrogen permeability and hydrogen desorption
ability.

Key words: V-based solid solution; Pd doping; surface; hydrogen permeability; first-principles calculation
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