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Fig. 1 True stress—strain curves of AZ91D alloy at different strain rates and temperatures: (a) 200 C; (b) 250 C;

(¢) 300 C; (d) 350 C
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Fig. 2 Working hardening rate curves under strain rates: (a) 0.001 s™'; (b) 0.01s™';(c) 0.1s™"; (d) 1 s
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Fig. 10 Volume fraction of dynamic recrystallization of strips after third-pass and fifth-pass rolling at different roll
temperatures: (a) 250 ‘C, third-pass; (b) 250 °C, fifth-pass; (c) 300 “C, third-pass; (d) 300 C, fifth-pass; (¢) 350 ‘C, third-pass;
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Fig. 11 Microstructures of AZ91D alloy strips after three passes rolling at different roll surface temperatures((a)—(c)) and

comparison of predicted results and measured value of dynamic recrystallization(d): (a) 250 ‘C; (b) 300 ‘C; (c) 350 C;

(d) Comparison of predicted results and measured value
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Plastic deformation of AZ91D magnesium alloy and
recrystallization structure simulation in heated roll rolling

MEI Rui-bin"?, SHI Xian-li?, BAO Li% LI Chang-sheng', LIU Xiang-hua'

(1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
2. School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China)

Abstract: The hot deformation behavior of AZ91D magnesium alloy was studied using single-pass compression
experiments at temperature of 200—450 ‘C and strain rate of 0.001 -1 s™'. An exponential function model was
proposed to describe the dynamic recrystallization volume fraction equations of AZ91D magnesium alloy based on
stress —strain curves. The numerical simulation of microstructure in heated roll rolling of magnesium alloy was
realized through embedding the developed program into the finite element software platform. The results show
that, with the increase of roll surface temperature and reduction, the dynamic recrystallization volume fraction
increases obviously, and the dynamic recrystallization is incomplete during single pass rolling. The multi-pass
rolling process is conducive to the full occurrence of dynamic recrystallization. When the roll surface temperature
is 300 C, the dynamic recrystallization fraction is close to 85% after three passes of heated roll rolling, and the
dynamic recrystallization is completed after five passes. Furthermore, the dynamic recrystallization grain sizes will
grow up with more rolling passes than three passes or higher roll surface temperature than 350 ‘C. The measured
results are in agreement with the values predicted by the model, and the dynamic recrystallization model is
significant to microstructure simulation and parameter optimization of AZ91D alloy in hot plastic deformation.

Key words: dynamic recrystallization; heated rolling; magnesium alloy strips; numerical simulation; microstructure
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