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Fig. 1 Schematic diagram of hot compression sample:

(a) Before compression; (b) After compression

# 1<B<<I.1, VLB KA 0] DL Z2HE ;
i B=1.1, RN LI AR BB = A T 3O
SO o SO AR SR PR it LA RS & S5 S H ) B
EVEE 2 1.168~1.237, itk 7 ZX AL B ) i
1TEEHEIEIE . EBRAHIMI S5 H—F vk RIE IE
PRV PRI, A 20 TR

(-5

m efb/Z

243 (e?-1)
X m NEGRE I EEREG o MBIEEN
HN s PAENAMINEE: b NBIERRSEG
e NERXTEG RAH 534 R4 i 72 P 1R FE 1
S 45 A R B B N AR AR B SE R, S04 BN

P _8hR

o H

2)

R=R,exp(-&/2) 1 H=h,exp(=¢), R, F hy 53 5l ik

FEPRRA S FEIVIGEME, ¢ NI ENAE . mFlb

I AR 28 5 TR, Hat Bl il o -
Ry 3V3b

h T 12-2b
RMR:RT 8 hoh—h @)
Rofre ROARFEILZ IR TSR, R MRS
W2 a2 RN RIE G S Ry A
AR 2 G w7, RIENESE]); R,
R TS 00 -

€)

b=4x

h

R.=R,x 7} )
h

RT:4/3XA)XR§—2R§ (6)

RIS PR FR A T 0 5 i B Y R A I P
JIME, BRER -7 E 2 fra. A
B2 G, SR AR L R] fr JBE 48 2 T 7 1))
(ELMS =TS BrAl,  ELPIE I8 ) 22 AH B o 9 A e 1
KK
2.1.2 REEIE

TEREAE SIS R, 25 N AR R (—
FERF 1s™), BRFE B2 FAR T 78 J i 1) p e vk
TRFRRE T, PRS0 KA (0 A5 A g S e S5 I
FEAEIIRAE N ) B3 BT AN [ WTAG TR S
T B 5 ) e i P32 (L o e A R A 28
HE 3 LLE H, YRR NN 0,001, 0.01
0.1 s, 2 EARTERN YIS A s, B
5 21l 5 7 T 0 O T S K, (R T
FRa. RS RG N 1 s, IR ZE AT R
LEESR N0 | SE b B i u R Ay
FEZEARTE . UM NY 10 7B, B iR A
VTR, 2T b AR RV, 2 R il
TP MRET GG, WA H
PRI, 2 G RN . 7ER
Wi, TR R R R, PR R
R ) v AR e T R IR 1 S AR AL
B, Hik, FZEm AR A S AR = R
A RAS T (R FE A, T % R AR B iR
22 Ml 2R B A B AR S I I 2 MR, RS T Ak



3255 5 W WO, A ETBIEFASN T 2050 FR4E A 4 55— A K 5 AR AN AN T 1257

60
(@)  ——Friction uncorrected (b) — Friction uncorrected
50 - - - -Friction corrected 80+ - ---Friction corrected
5 £
E g 60
2 2
s g
@ 240
9 :
& =
20
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
True strain True strain
120 160
©) — Friction uncorrected (d — Friction uncorrected
100 ----Friction corrected 140 - - - - - Friction corrected
s o 120H T 340 C
& - S | .
2 = 100
g g
b7 @
[} o
& &
20
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
True strain True strain
180
(e) — Friction uncorrected
7 - - - - Friction corrected
150
s woll T 340 C
s |l re——— 380 C
17 | o
8 9 e 420 i
@ s 0°C
s W n
£ 60 500 C
30 F
0 0.2 0.4 0.6 0.8

True strain

B2 AR A R T BRI 1E 5 R BE B 1E I 0N )~ N AR il 2 0) L
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Constitutive modeling and processing maps of
2050 Al-Li alloy based on corrected flow stress
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(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education,
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Abstract: The hot deformation behavior of hot-rolled 2050 Al-Li alloy at 340-500 ‘C and 0.001 -10 s™' was
studied by hot compression simulation experiment. The effects of friction and temperature variation on the flow
stress of the alloy during the hot compression process were analyzed, and the true stress —strain curves were
corrected. Based on the corrected curves, the constitutive equation of the hot-rolled 2050 Al-Li alloy was
constructed, including the strain modified Arrhenius model and Hensel-Spittel model. At the same time, the
processing maps of the alloy under different true strains were established. The microstructure of the hot
compressed samples was observed by the optical microscope. The results show that the friction will cause the
measured value of true stress to be higher than the actual stress value, and the temperature change caused by
adiabatic heat will cause flow softening and decrease the true stress. The two types of constitutive equation models
both fit well in the fitting interval. The strain-compensated Arrhenius model has a higher degree of mathematical
fitting in the steady-state. The Hensel-Spittel model can describe the entire hot deformation process of the alloy. It
can be found from the processing maps that the best processing range for the hot-rolled 2050 Al-Li alloy is within
the region that the temperature ranges from 420 ‘C to 500 ‘C and the strain rate ranges from 0.001 s™' to 0.003 s™".
The instability areas locate on two regions, there are region of temperature 350-480 °C, strain rate 3.16—10 s”1 and
region of temperature 340-360 “C, strain rate 0.1-3.16 s™'. The alloy mainly undergoes dynamic recovery and
dynamic recrystallization in the stable area, while the flow localization mainly occurs in the instability area.

Key words: 2050 Al-Li alloy; Arrhenius model; Hensel-Spittel model; flow stress constitutive equation;

processing map
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