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Table 1 Mechanical properties of high-entropy alloys at room temperature and cryogenic temperature

Alloy Phase T/K 0,,/MPa o,/MPa 0/% Ref.
_ RT 376 767 52.5
FeCoCrNiMo,., FCC [15]
77 710 1212 71.2
. RT 498 752 52.5
VCrMnFeCoNi FCC [16]
77 698 1128 78.6
, RT 250 635 58.5
Al,.,CoCrFeNi FCC [17]
77 412 1042 81.6
_ RT 220 620 58.4
Al,.,CoCrFeNi FCC [17]
77 515 1010 68
. RT 875 994 14.1
TiZrHfNbTa BCC [18]
77 1547 1762 15.2
V. Cr,.Fe, Co Ni FCC RT 397 721 o8 [19]
T (S (0] 1
107157 T0 07 s 77 600 1073 81.4
V, Cr, Mn.Fe,.Co, Ni FCC KT 442 g >3 [19]
T n.re 0] 1
OIS 0TS 77 698 1136 78.5
V,,Cr,.Mn,Fe, Co, Ni FCC+ RT >4 860 162 [19]
T n (& (0] 1 o
HOTISTEI0T 3002 77 766 1225 54.1
o RT 700 1240 36
FeCoNiCrTi,., FCC+L1, [20]
77 860 1580 46
Ni, Co. Fe .Cr, Al Ti FCC+L1 RT 925 1310 3 [21]
1 (0] (] I 1
TR0 SO : 77 1080 1700 51
, RT 537 874 31.6
Al,,.,CoCrFeNi FCC+BCC [22]
77 796 1329 30.5
. RT 620 1155 20.4
AlCoCrFeNi,., L1,+B2 [23]
77 857 1461 16.6
Co,.Cr,,Ni, -ALTi FCC+HCP +L1 RT 1120 1400 36 [24]
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Fig. 4 Engineering stress—strain curves of the CoCrFeNi
alloy from room temperature to low temperaturel?’):
(a) Engineering stress—strain curves and photograph of the
dog-boneshaped samples before and after tensile tests;
(b) Enlarged image of black rectangle in (a) showing stress—

strain curve at 4.2 K

26 J5 T 45 W 95 & 4 TiZrHfNDTa /2 — Fh 81—
BCCAHIMERS =i &, AR SR T BRI
W, RA RGN HEE . WANG &' X
TiZrHfNbTa & i & & 75 77 K. 127 K. 177 K.
227 KA1277 K BE N AT hef scs, a6 i
1E77 K, il 4 b A i K 2 R RFLE 20.8%,
JiE B 5 P R R, IR 1549 MPa, A BRI
M%7z .

L JE SR TiZIHINDTa B & & B A I 5
(1 i Al 5 S RNTE 77 K R S 2R, F ik g
T I m P RS S iR N LA
Ry, AR T BRLEASTE AL Dy {112} (111)



BREHSH R,

PR < G R S ARIEAL BRI T

1243

PUIKZE A S TEAR 1 3 BCC— o AHAZ I B T
¥ PR o FEA T RN T 4580, J8THE%
BRI N WA, W7 FiR. o AHRTHLIRZE
s 19 i AR AL B i B R (0L B 7(b) R () TERL )
TERR, MARRAETEZR G Al . MUER A
FHAR [ R R SO I FE 9 227~277 Ko

HU Z5287E BF 53 TiZeHfNbTa & 05 2 S 30,
TEMRAIRE T, 120 A R 7E A AR
TE R R I A PEWT RSN . TE RS I, N
2 400 s7HHE I E] 2600 57V I, AR N 7 M 1294
MPa 3 %] 1760 MPa. 75 &R (77 K) R N AR
HZ(2600 s AR, JE IR B TiZrHENDTa

G e A WIEAE g RS

22 ZHEEHEEKETHNHFMEE

M R A R, T AR R RE R
MR E e, HAl, ZMHEHEEeEE R
B AR FCC A A (M & IR AL 5 ov L1,
BCCHT AR R, J: A4 38 W] GEA7 £ HCP A . I
I 2 R A I B R RO AT R AR T RE A
WA, Bk VAR, 2RSSR
SEPIMERIR T Z R R . ARAREIME. B AR AN
B S S5 2 LA B P R VE T

YONG S5 it e Bk K 4R 55 B8 7K EL e e

[ * » LY .
. : L

5 EMA 4 CoCrFeNi FIHCP A 245 A4 K 225 i H 5 20 938 STEM (%27

Fig. 5 High-resolution STEM images of HCP phase, stacking fault and nano-twinning of high-entropy alloy CoCrFeNi:
(a) High-resolution STEM image containing HCP stacking, stacking fault [SF] and nano-twins [T]; (b) Enlarged image of red

rectangle in Fig. (a) showing ABABAB HCP stacking®”
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Fig. 6 Engineering stress—strain curves and true stress—strain curves of TiZrHfNbTa alloy at 277 K and 77 K '3}
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Fig. 7 Schematic illustration of crystallographic configurations of @ phase and mechanical twin in tensile deformed

TiZrHfNbTa alloy: (a) Lattice correspondence of BCC and w phase; (b) Atomic arrangement of (121) [111] mechanical twin;

(c) Interfacial w phase at twin boundary viewed along [101] BCC orientation!'®
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Fig. 8 Engineering stress — strain curves of as-cast
AlCoCrFeNi,, EHEA tested at different

temperatures!”!

tensile
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Fig. 9 Relationship between ultimate tensile strength and elongation to failure for HEAs of cryogenic alloy and high

entropy alloy materials at 4.2 KI**!
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Fig. 10 Microstructures and phase transformation diagrams of CoCrFeNiMo, s high entropy alloy after cryogenic rolling:

(a), (b), (c) HRTEM images of cryogenic rollying with thickness reductions of 30% sample: (a) Showing abundant nanotwins

and SFs aggregate together; (b) Illustrating high density of SFs at TBs and phase transformation (inset is corresponding FFT

pattern); (c) Close up view of rectangle area in Fig. (b) for detail of FCC—HCP transformation; (d), (e) Schematic illustration

of phase transformation mechanism®*”
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Engineering stress — strain plots of AICoCrFeNi,,
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Research progress of low temperature performance and
cryogenic treatment of high entropy alloys

LI Ke-ran, WANG Dong-liang, DENG Lei, JIN Jun-song, GONG Pan, WANG Xin-yun

(State Key Laboratory of Materials Processing and Die and Mould Technology,
School of Materials Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China)

Abstract: Because of its multi-principal component atomic composition, high entropy alloys(HEA) have the
potential to be used as structural engineering materials. HEAs have different microstructure and excellent
properties from traditional alloys. With the decrease of temperature, HEA s generally maintain excellent physical
and mechanical properties, some of which have been improved. Thus HEAs can be used as a potential low
temperature material in extreme environments such as polar research and space environment. As an extension of
heat treatment, low temperature treatment is widely used in steel and nonferrous metal. Recent studies have found
that low temperature treatment is also effective for HEAs. This paper summarizes the changes of physical and
mechanical properties of HEAs at low temperatures. It reveals the effects of cryogenic treatment and cryogenic
treatment combined with heat treatment and processing on the properties of HEAs. The principle of obtaining
excellent properties of HEAs at low temperature and the effect of low temperature treatment on the microstructure
of HEA s are summarized. The future research direction of low temperature performance and treatment of high
entropy alloys are discussed

Key words: high entropy alloy; low temperature; physical property; mechanical property; low temperature

treatment
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