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Abstract: Updated version of local non-equilibrium diffusion model (LNDM) for rapid solidification of binary alloys was considered. 
The LNDM takes into account deviation from local equilibrium of solute concentration and solute flux fields in bulk liquid. The 
exact solutions for solute concentration and flux in bulk liquid were obtained using hyperbolic diffusion equations. The results show 
the transition from diffusion-limited to purely thermally controlled solidification with effective diffusion coefficient LNDM

bD →0 and 
complete solute trapping KLNDM(v)→1 at v→vDb for any kind of solid-liquid interface kinetics. Critical parameter for diffusionless 
solidification and complete solute trapping is the diffusion speed in bulk liquid vDb. Different models for solute trapping at the 
interface with different interface kinetic approaches were considered. 
Key words: binary alloys; solute trapping; rapid solidification; local-nonequilibrium diffusion; hyperbolic diffusion equation; solute 
concentration; solute flux fields 
                                                                                                             
 
 
1 Introduction 
 

Rapid solidification phenomena occur under 
conditions that are far from equilibrium [1−22]. The 
most obvious manifestations of the deviations from local 
equilibrium is solute trapping which increases the solute 
concentration in solid phase and reduces the segregations 
in the liquid side of interface. The degree of solute 
trapping is usually quantified by the partition coefficient 
K, defined as a ratio of the concentration of solute in the 
solid to that in the liquid at the interface. This process is 
useful to obtain very fine structure with uniform 
properties. Examples of rapid solidification products 
accompanied by solute trapping are powders, wires and 
foils which can be used in powder metallurgy or in 
producing higher performance composite materials. As 
an emerging rapid solidification technology, direct strip 
casting is a continuous casting process for producing as 
cast metallic sheet of carbon and stainless steels, 
aluminum, magnesium, titanium and other alloys without 
any further thermo-mechanical processing. Therefore, 
the development of capability in predicting solute trap-
ping phenomena is an important task in designing new 
materials and new processes. 

The effect of solute trapping has been investigated 

theoretically using analytical models [1,2,8−13,16−18, 
21,22], phase-field models [14], molecular dynamics 
simulations [15, 23], Monte Carlo computer simulations 
[19] as well as experimental investigations [1 – 7,9]. The 
most outstanding question in all these studies is 
transition to complete solute trapping K(v)=1, where v is 
the interface velocity. The continuous growth model 
(CGM) [8], the stepwise growth model (SGM) [9], the 
aperiodic stepwise growth model (ASGM) [9], and the 
JACKSON et al model [18,19] predict complete solute 
trapping K(v)=1 only at v→∞. By contrast, the local 
nonequilibrium diffusion model (LNDM) [10−13], based 
on the assumption of absence of local-equilibrium during 
solute diffusion in bulk liquid, leads to diffusionless 
solidification with complete solute trapping K(v)=1 at a 
finite interface velocity v=vDb, where vDb is the diffusive 
velocity in the bulk liquid, i.e. the  speed of atomic 
diffusion in liquid phase. The complete solute trapping 
was also observed in the experiment [3−7, 9], phase-field 
models [14], and molecular dynamics simulations [15]. 

The classical theoretical treatments of rapid 
solidification [1,8,9,18,19] take into account only the 
deviation from equilibrium at the interface introducing 
the velocity dependent partition coefficient K(v). Such a 
modeling is valid only for relatively low interface 
velocities v<<vDb. With increasing undercooling, and  
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correspondingly increasing driving force for 
crystallization, the growth rates increase and may reach 
rates of the order of 100 m/s, while the diffusive speed is 
of the order of 1−30 m/s. In these cases, i.e. when v∼vDb, 
the diffusion field in the liquid is far from local 
equilibrium and the solute concentration and solute flux 
differ significantly from those predicted by the classical 
local-equilibrium theory [10−13,25]. 
 
2 Local nonequilibrium diffusion model 

(LNDM) 
 

According to extended irreversible thermodynamics 
(EIT) [24] and some other local-nonequlibrium 
approaches [25−28], the simplest generalization of the 
classical Fick law for mass transport, which includes the 
relaxation to local equilibrium of the diffusion field, is 
given as 
 

CDtJJ ∇−=∂∂+ b/τ               (1) 
 
where J is the solute flux, C is the solute concentration, 
Db is the diffusion coefficient in bulk liquid, τ is the 
relaxation time of J. In contrast to the Fick law, which is 
based on local-equilibrium approach, the evolutional  
Eq. (1) takes into account deviation of diffusion field 
from local equilibrium. Thus, local nonequilibrium 
diffusion model (LNDM) for solute concentration during 
rapid solidification takes the form [10−13, 25]: 
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The hyperbolic Eq. (2) predict the finite speed of 
the diffusive wave, i.e. maximum speed with which the 
diffusional perturbations can propagate in the liquid 
[10−13,24−28]: 

2/1
bDb )/( τDv =                  (3) 

It should be noted that vDb limits only the speed of 
diffusive perturbations (diffusive signal), but the 
interface velocity v can be greater than vDb. To derive the 
interface condition, we integrate the balance low over an 
infinitesimal zone that includes the interface between 
liquid and solid phases. The interface condition is 
 

SS)( JJCCv −=−                             (4) 
 
where CS and JS are the solute concentration and solute 
flux in the solid at the interface. Assuming JS=0 and 
using Eq. (1), we can rewrite the interface condition as 
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where the superscript dot implies differentiation with 
respect to time. Note that condition Eq. (5) includes not 
only the interface velocity, but also the interface 
acceleration. 

Now let us consider the solute concentration field 
ahead of the interface moving with constant velocity 
v=const. Following the usual steady-state approach, we 
view the solidification from a reference frame attached to 
a planar liquid-solid interface. In such a case, a 
one-dimensional version of Eqs. (2) and (4) takes the 
form: 
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Equations (5) and (6) result in the solute 

concentration and solute flux distributions in the liquid 
X>0 (the origin of the reference frame is fixed on the 
beginning of interface X=0) [10−13,25]: 
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where C0 and Ci are the solute concentration in the liquid 
far from (X→∞) and at the interface (X=0), respectively. 

The results of LNDM Eqs. (9) and (10) clearly 
demonstrate that the diffusion speed vDb decisively 
affects the diffusion field in the bulk liquid. When v<vDb, 
the diffusion process affects the solute concentration 
field in the liquid and the solidification is essentially 
controlled by the solute flux. It is noted that as the 
interface velocity approaches zero, the relaxation model 
approaches the classical formulation. However, as the 
velocity increases, the solute boundary layer shrinks 
more rapidly than expected from the classical mass 
transport theory, and its thickness d defined as (see Eqs. 
(9) and (10)) 
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approaches zero at v=vDb. 
When v>vDb, LNDM Eqs. (9) and (10) imply that 

C(X)=C0, J(X)=0, and d(v)=0. This means that the solute 
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concentration field ahead of the interface is undisturbed. 
The result has a clear physical meaning: a source of 
perturbations (i.e. the interface) moving with a velocity 
greater than the maximum speed of perturbations cannot 
disturb the medium ahead of itself [24,25]. In this case, 
the solute atoms do not have enough velocity to escape 
the solid-liquid interface. Thus, there is no diffusion of 
solute in the liquid at v>vDb and, consequently, the 
solidification cannot be controlled by diffusion. Hence, 
the solidification mechanism changes qualitatively when 
the interface velocity v passes through the critical point 
v=vDb. In this point, a sharp transition from diffusion 
controlled to purely thermally controlled growth occurs. 

Now, let us compare the solute concentration and 
solute flux distributions according to LNDM, Eqs. 
(9)−(11), with classical local equilibrium ones: 
 

0
)/exp()()( b0 CDvXCСXC i +−−=             (9a) 

 
)/exp()( bDvXJXJ i −=                     (10a) 
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Equations (9a)−(11a) are the solutions to the solute 

concentration and solute flux fields obtained from local 
equilibrium diffusion equation of parabolic type. Thus, 
the comparison of exact solutions to LNDM, Eqs. 
(9)−(11), with classical solute concentration and solute 
flux fields, Eqs. (9a)−(11a), allows us to introduce the 
effective diffusion coefficient in bulk liquid LNDM

bD  
[10−13] as 
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If v<<vDb, the effective diffusion coefficient 

LNDM
bD  reduces to the classical diffusion coefficient Db 

for the local-equilibrium conditions. But when v is of the 
order of VDb, LNDM

bD predicts less solute flux 
CDJ ∇−= LNDM

b  than expected from the classical Fick 
law CDJ ∇−= b . If v≥vDb, then LNDM

bD =0 that differs 
qualitatively from the prediction of the classical 
approach. It implies the absence of solute diffusion ahead 
of the interface. The effective diffusion coefficient    
Eq. (12) can be used to modify some results of classical 
rapid solidification theory based on Fick law by 
substituting LNDM

bD for Db at least for steady-state 
regimes. WALDER [5] took into account the effective 
diffusion coefficient Eq. (12) to modify the dendritic 
growth theory of TRIVEDI, LIPTON and KURZ and 
obtained better agreement with experiment. 
 
3 Models for solute partitioning 
 

The partition coefficient K(v) (ratio of solid to 
liquid concentration of solute at the interface) plays an 
important part in rapid solidification phenomena. The 

results of LNDM Eqs. (9) and (10) clearly demonstrate 
that when v≥vDb there is no any diffusion of solute at the 
interface and therefore the partition coefficient KLNDM 
does not depend on v and KLNDM=1. It should be stressed 
that the result of LNDM, KLNDM=1 at v≥vDb, does not 
depend on kinetic effects at the solid-liquid interface. It 
is purely diffusive effects [9−12]. It means that for any 
interface kinetic model the limit KLNDM(v)→1 at v→vDb 
must be achieved as long as no other mass transport 
process apart from diffusion (for example, convective 
solute flow or something like that) comes into play. The 
fact will be illustrated here below. 
 
3.1 Continuous growth model (CGM)—Dilute limit 

The continuous growth model (CGM) of AZIZ and 
KAPLAN [6,8,9] treats the case when the interface is 
atomically rough enough that growth and redistribution 
occur simultaneously as strictly steady-state processes, 
even on the microscopic scale of the crystal lattice. It 
predicts a velocity dependence of the partition coefficient 
given by 
 

]/1/[]/[)( DiDiE vvvvKvK ++=                 (13) 
 
where KE is the equilibrium partition coefficient, VDi is 
the interface diffusion speed. At v=vDi, Eq. (13) describes 
mid-transition between KE and unity and predicts 
complete solute trapping KE=1 only at v→∞ . 

The diffusive speed in LNDM, vDb, and the interface 
diffusion speed, vDi, in Eq. (13) require further discussion. 
The CGM defines the vDi as the ratio of solute diffusivity 
through the interface Di to the atomic jump distance at 
the interface λi. In other words, vDi is the average 
diffusive speed over the interface region and it has been 
called as the interface diffusive speed vDi. The interface 
diffusive speed is a kinetic rate parameter for solute 
redistribution at the interface for relatively low interface 
velocity v<vDb. The LNDM, Eqs. (1)−(10), define the 
diffusive speed vDb  as the speed of propagation of 
diffusive wave in the bulk liquid [10−13,25]. The 
diffusive speed vDb is a diffusive parameter for solute 
diffusion in bulk liquid under local-nonequilibrium 
conditions and it does not depend on interface kinetics of 
solidification. Taking into account that the relaxation 
time τ in LNDM can be rewritten as τ=λb/vDb, where λb is 
the atomic jump distance in the bulk liquid, the diffusive 
speed in the LNDM takes the form vDb=Db/λb, where Db 
is the solute diffusion coefficient in the bulk liquid. 
Assuming that Di≈Db and λi≈λ, one is led to vDi≈vDb. This 
assumption was considered in Refs. [10,13]. In a general 
case these two velocities can be different and the 
partitioning of solute depends on both vDb and vDi [11,12]. 
The interface region can be treated as a two phase zone 
consisting of both solid and liquid phases. This implies 
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that the interface diffusive coefficient Di attains a value 
between Db, the bulk liquid diffusion coefficient, and, Ds 
the bulk solid diffusion coefficient. This holds true for 
the interface diffusive speed, too, i.e. vDb>vDi>vDs≈0, 
where vDs is the diffusive speed in the solid [11,12]. The 
interface diffusive speed governs the partitioning at a 
relatively low interface velocity v~vDi<vDb, when the 
diffusion through the solid-liquid interface is a limiting 
stage of solute redistribution. At high interface velocity 
v~vDb, the limiting stage of solute redistribution is the 
solute diffusion in the bulk liquid with vDb being the 
characteristic parameter. 

Thus, introduction of )(LNDM
b vD , Eq. (12), into the 

expression for K(v), Eq. (13), leads to the generalized 
partition coefficient KLNDM(v), which takes into account 
both interfacial kinetic effects according to CGM (the 
interface redistribution parameter vDi) and local- 
nonequilibrium diffusion effects according to LNDM 
(the bulk liquid diffusion speed vDb) [11,12]: 
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Expression (14) clearly demonstrates that the 
transition to complete solute trapping KLNDM(v)=1 occurs 
at a finite interface velocity v=vDb, while the CGM,   
Eq. (13) predicts the complete solute trapping only at v→
∞. The result of LNDM, Eq. (14), is in good agreement 
with the phase-field simulation [14], molecular dynamic 
simulation [15], and experimental data [6,7] (see also 
Refs. [11,12] and references therein).  
 
3.2 Continuous growth model (CGM)—Non-dilute 

limit 
According to CGM the partition coefficient in 

non-dilute limit takes the form:  
]/1/[]/)1([),( DiDi0EE0 vvvvCkkCvK ++−+=     (15) 

 
where kE is the equilibrium partition coefficient for the 
solute divided by the equilibrium partition coefficient for 
the solvent [7,8]. This equation can be modified to local 
nonequilibrium diffusion case by using concept of the 
effective diffusion coefficient )(LNDM

b VD , Eq.(12). 
After some algebra we have 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
<+−

+−+−

=

Db

DbDi
2
Db

2
Di0EE

2
Db

2

0
LNDM

 ;1
 ;]//1[    

/]/))1()(/1[(

),(
vv

vvvvvv

vvCkkvv

CvK  

 (16) 
The partition coefficient KLNDM(v,C) takes into 

account both interfacial kinetic effects in non-dilute limit, 
according to CGM [7,8], and local nonequilibrium 

diffusion effects according to LNDM, Eqs. (6)−(12). As 
it was predicted earlier, the partition coefficient 
KLNDM(v,C0)→1 when v→vDb due to local 
nonequilibrium diffusion effects. 

 
3.3 Stepwise growth model (SGM) 

The SGM [9] treats the case in which an atomically 
smooth, sharp interface advances by the periodic lateral 
passage of monolayer, including any solute atoms in the 
layer. Solute diffuses back into the liquid during the 
period before the passage of the next step, at which point 
any remaining solute is assumed to be permanently 
trapped into the solid. The predicted velocity-dependence 
of K for this mechanism is 
 

)/exp()1()( DiEE vvKKvK −−+=                (17) 
 

Note that in the SGM dependence K from v,     
Eq. (17), yields complete solute trapping K=1 only at v→
∞. Taking into account local-nonequilibrium diffusion 
effects in bulk liquid according to LNDM approach,   
Eq. (17) can be rewritten as 
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The expression for KLNDM(v), Eq. (18), takes into 

account both departure from local equilibrium of 
diffusion process in bulk liquid according to LNDM and  
interface kinetic conditions assumed by SGM. It leads to 
complete solute trapping KLNDM(v)=1 at v≥vDb. 
 
3.4 Aperiodic stepwise growth model (ASGM) 

The ASGM [6,9] treats the same case as the SGM, 
except that the passage of steps is assumed to occur 
randomly, rather than periodically, in time. It predicts 
variation of K with interface orientation. The ASGM 
assumes that at any orientation the interface is broken 
into (111) terraces of single double-layer height and 
random width and that solidification proceeds by the 
lateral passage of these steps at random intervals. Some 
(not all, as in SGM) of the solute atoms in the monolayer 
of liquid adjacent to the interface are trapped as a step 
passes. The ASGM expression for K(v,θ) is given by 
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where βT=v/(vD

Tcos θ), βL=v/(vD
Lcos θ), vD

L is diffusive 
speed at the ledge, vD

T  is diffusive speed at the terrace, 
and θ is the angle of inclination from (111). Using the 
effective diffusion coefficient Eq. (12) LNDM leads to 
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Equation (20) generalizes Equation (19) for local 

nonequilibrium case and predicts complete solute 
trapping at v≥vDb in contrast to Eq. (19) which gives 
K(v,θ)→1 only at v→∞. 
 
3.5 JACKSON et al model 

Another theory for solute trapping due to 
JACKSON et al [18,19] is derived using reaction rate 
theory to describe the rate of atom attachments to the 
active sites of a sharp solid-liquid interface. The model is 
based on the standard quasi-equilibrium model for 
crystallization, which has been extended to include the 
non-equilibrium effects found in the Monte Carlo 
simulations of alloy solidification. The parameter in the 
model, β, is clearly identified as the important parameter 
for solute trapping. This parameter embodies the 
relationship between the growth and diffusion 
parameters found in the Monte Carlo simulations. This 
parameter is interpreted as the ratio of the distance that 
the interface advances to the distance that an atom can 
move by diffusion during the time in which it is at the 
interface. If τ is the average time it takes for an atom to 
join the crystal, the distance that the interface advances 
during this time is vτ. The distance that an atom can 
move by diffusion during this time is (Dbτ)1/2, where Db 
is the diffusion coefficient of B atoms in the liquid. The 
ratio of these two distances is the dimensionless 
parameter β [18,19]: 
 

2/1
b )( τ
τβ

D
V

=                              (21) 

 
Taking into account Eq. (3) for diffusive velocity in 

bulk liquid and the fact that the relaxation time in LNDM 
corresponds to the average time it takes for an atom to 
join the crystal in JACKSON et al model, the parameter 
β, Eq. (21), transforms to the ratio β=v/vDb. The 
parameter v/vDb is also the critical parameter in LNDM, 
Eqs. (1)−(12), and in some other models [25], but in 
LNDM v/vDb governs solute diffusion in bulk liquid, and 
hence, solute partitioning at v→vDb, and in JACKSON et 
al model parameter β governs non-equilibrium 
segregation at the solid-liquid interface. Solute 
partitioning is governed by both solute segregation 
process at the interface with governing parameter β and 
local nonequilibrium diffusion effects with governing 
parameter v/vDb. But the parameter β in JACKSON et al 
model [18,19] plays an important role at moderate 

interface velocity v<vDb and parameter v/vDb in LNDM 
comes into play when v→vDb and local nonequilibrium 
diffusion effects are mostly decisive. Note that in our 
opinion parameter β, Eq. (21), depends on Di (interface 
diffusion coefficient) rather than Db (bulk liquid 
diffusion coefficient), because B atom is considered one 
jump to the interface and, hence, the close presence of 
interface affects the distance that an atom can move by 
its last jump. Parameter (Dbτ)1/2 is the distance that an 
atom can move by diffusion during time τ in bulk liquid 
far from interface when the interface does not influence 
the diffusion process in liquid. But in some case 
assumption Di=Db is a reasonable approximation. 

Thus, for rough interfaces and small concentration 
of solute, the theory of JACKSON et al yields [18,19] 

)1/(1
E)( vAKvK ′+≈                           (22) 

where A' depends on the square root of the diffusion 
coefficient, namely, A′=A″/(Db)1/2. From Eqs. (12) and 
(22) one can calculate 
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(23) 
The partition coefficient Eq. (23) incorporates both 

interface kinetic model of JACKSON et al [17,18] and 
local nonequilibrium diffusion field according to LNDM. 
As it was expected one can observe partitionless 
solidification KLNDM(v)→1 when v→vDb in contrast to  
Eq. (22) that leads to complete solute trapping only at 
v→∞.  
 
4 Hierarchy of deviation from local 

equilibrium 
 

Solidification of undercooled melts occurs at wide 
range of velocities up to hundreds m/s and includes 
various physical phenomena such as solute diffusion, 
heat conduction, interface kinetics of solidification. Each 
of these processes has its own characteristic time and 
length scales (in a steady-state – characteristic velocities). 
It implies that while interface velocity increases, the 
solute diffusion, interface kinetics, and heat conduction 
deviate from equilibrium at different values of interface 
velocity. This allows us to introduce a hierarchy of 
deviations from equilibrium which is followed by 
increasing solidification velocity [2,11,12]: 

1) v=0. Full equilibrium. No chemical potential 
gradient (composition of phases are uniform), no 
temperature gradients, K=KE. 

2) v<<vDb. Local equilibrium. There are concen- 
tration and temperature gradients near the interface, i.e. 
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there is no full equilibrium, but there is local equilibrium 
both in the bulk liquid and at the interface. The partition 
coefficient is equal to its equilibrium value KE. Diffusion 
and temperature fields are described by local-equilibrium 
transfer equation of parabolic type. 

 3) v<vDb. Non-equilibrium interface kinetics. 
There is no local equilibrium at the interface and the 
partition coefficient depends on the interface velocity v. 
In this case (as well as in case 2), the solute 
concentration and temperature fields are governed by the 
classical (local equilibrium) transport equation of 
parabolic type. 

4) v≤vDb. Non-equilibrium diffusion field. In this 
case, there is no local equilibrium in the bulk liquid. 
Hence, according to LNDM, solute concentration and 
solute flux fields in bulk liquid are governed by the mass 
transport equations of hyperbolic type (1)–(2) [10−13]. 
The temperature field is still at local equilibrium due to  
v∼vDb<<vT and it can still be described by the classical 
heat conduction equation of parabolic type. Partition 
coefficients KLNDM(v) are given by Eqs. (14), (16), (18), 
(20), and (23) for different types of interface kinetic 
model. The choice of the model depends on the 
characteristics of a particular rapid solidification process 
at the interface. In this case, solute partitioning is 
governed by both interface kinetics and solute diffusion 
in bulk liquid. But when the interface velocity increases, 
the dependence of K from interface kinetics parameters 
is weaker and solidification mainly depends on vDb 
demonstrating transition to diffusionless regime 
( 0)(LNDM

b →vD ) with complete solute trapping 
KLNDM(v)→1 at v→vDb for all interface kinetic models 
(see Eqs. (14), (16), (18), (20), and (23)). 

5) v≥vDb. Diffusionless solidification. According to 
LNDM, at this interface velocity KLNDM(v)≡1 and 

.0)(LNDM
b ≡vD This implies thermally controlled 

diffusionless solidification with complete solute trapping. 
Ahead of the interface C(X)=C0 and J(X)=0. The result 
does not depend on the interface kinetics and is a 
consequence of deviation from local equilibrium in bulk 
liquid with vDb being the critical parameter [10−13]. 

6) v∼vT. Local-nonequilibrium temperature field. At 
such high velocities heat transport occurs far from local 
equilibrium. The temperature field is governed by 
hyperbolic transport equations [20−23]. If solid-liquid 
interface propagates only due to undercooling effects, the 
interface velocity v is limited by vT−the speed of heat 
wave [25]. 
 
5 Conclusions 
 

LNDM clearly demonstrates that a sharp transition 
from diffusion-controlled to purely thermally controlled 
solidification occurs due to local nonequilibrium solute 

diffusion in the bulk liquid. The critical parameter for the 
transition is vDb (the diffusive velocity in the bulk liquid), 
i.e. the speed of atomic diffusion in liquid phase. When 
v<vDb, solidification is governed mostly by the diffusion 
processes in bulk liquid, whereas at v>vDb, diffusion flux 
ahead of the interface JLNDM(X)=0, and CLNDM(X)=C0. 
This implies that solidification occurs in diffusionless 
regime without solute segregation at the interface 
(complete solute trapping). The transition from 
diffusion-controlled to thermally controlled partitionless 
solidification was observed in experiments. 

Local nonequilibrium diffusion effects lead to the 
effective (velocity dependent) diffusion coefficient in 
bulk liquid ).(LNDM

b vD  The effective diffusion 
coefficient has been used to modify a number of existing 
solute partitioning models. Due to local nonequilibrium 
diffusion effects all the models predict the transition to 
diffusionless solidification with complete solute trapping 
KLNDM(v)=1 when the interface velocity v passes through 
the critical point v=vDb. Thus, at high interface velocity 
v→vDb, the solute partitioning at the solid-liquid interface 
is mainly governed by solute diffusion in bulk liquid 
rather than by interface kinetics of solidification. 
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快速凝固中局部非平衡溶质截留的分析模型 
 

S. L. SOBOLEV 
 

Institute of Problems of Chemical Physics, Academy of Sciences of Russia, 
Chernogolovka, Moscow Region, 142432, Russia 

 
摘  要：对二元合金快速凝固过程中的局部非平衡扩散模型(LNDM)进行改进。改进的模型考虑了熔体中溶质浓

度和溶质通量流场与局部平衡的偏差。采用双曲函数扩散方程求得了熔体中溶质浓度和通量的准确解。结果表明，

对任何固−液界面的动力学，当有效扩散系数 0LNDM
b →D 和在 v→vDb 发生完全溶质截留 KLNDM(v)→1 时，凝固过

程将由扩散控制转变为完全的热控制。非扩散凝固和完全溶质截留的临界参数为在溶体中的扩散速度 vDb，考察

了不同界面动力学途径的溶质截留模型。 
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