

Available online at www.sciencedirect.com

Transactions of Nonferrous Metals Society of China

Trans. Nonferrous Met. Soc. China 22(2012) 2535-2540

www.tnmsc.cn

Synthesis of LiMnPO₄/C composite material for lithium ion batteries by sol-gel method

ZHONG Sheng-kui^{1, 2, 3}, WANG You², LIU Jie-qun^{1, 2, 3}, WANG Jian²

1. Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology,

Guilin 541004, China;

College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China;
Shagang School of Iron and Steel, Soochow University, Suzhou 215021, China

Received 9 July 2012; accepted 1 August 2012

Abstract: The LiMnPO₄/C composite material was synthesized via a sol-gel method based on the citric acid. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance tests were adopted to characterize the properties of LiMnPO₄/C. The XRD studies show that the pure olivine phase LiMnPO₄ can be obtained at a low temperature of 500 °C. The SEM analyses illustrate that the citric acid used as the chelating reagent and carbon source can restrain the particle size of LiMnPO₄/C well. The LiMnPO₄/C sample synthesized at 500 °C for 10 h performs the highest initial discharge capacity of 122.6 mA·h/g, retaining 112.4 mA·h/g over 30 cycles at 0.05*C* rate. The citric acid based sol-gel method is favor to obtain the high electrochemical performance of LiMnPO₄/C.

Key words: lithium-ion battery; cathode material; sol-gel method; LiMnPO₄/C; electrochemical performance

1 Introduction

Polyanion compounds LiMPO4 (M=Mn, Fe, Co and Ni) are considered the promising cathode materials for lithium ion batteries. LiMPO4 (M=Mn, Fe, Co and Ni) cathode materials have more advantages than traditional materials, such as low cost and toxicity [1-3]. The high electrochemical and thermal stabilities of LiMPO₄ are attributed to their phosphate structure [4,5]. In these compounds, LiFePO₄ has received a wide application. Recently, much attention has been paid to LiMnPO₄, because of its high voltage platform of 4.1 V. Compared with LiFePO₄, the theoretical energy density of LiMnPO₄ is about 1.2 times larger than that of the former [6]. However, LiMnPO₄ presents a poor electrochemical performance, which is attributed to difficulty in lithium ion diffusion and low electronic conductivity [7,8]. To these disadvantages of LiMnPO₄, one effective approach is to control the particle size. Generally, the appropriate particle size can make lithium ion diffusion easy [9]. However, the carbon coating [10-12] and metal ion doping [13–15] were also used to enhance the properties

of LiMnPO₄. On the other hand, the electrochemical performance of LiMnPO₄ can also be improved by the optimized synthesis route. Taking a example of sol–gel method [16], the precursor is dispersed into the molecular level in the solution and the gel can be obtained during stirring process. Meanwhile, chelating agent is adopted to form the gel in this system. Finally, the sintering temperature is lower compared with traditional solid state route, and the particle size is minimized.

In this work, olivine LiMnPO₄/C was synthesized via a sol-gel method based on the citric acid. The citric acid was used as chelating agent and carbon source in this route. As a chelating agent, the citric acid can help precursor to disperse into the molecular level in the solution. During the sintering process, the decomposition of citric acid could minimize the particle size of LiMnPO₄/C. The effects of sol-gel route on LiMnPO₄/C were measured by TG, XRD, SEM and electrochemical performance test. The optimal synthesis conditions of LiMnPO₄/C by sol-gel method could be defined from these results.

Foundation item: Project (0991025) supported by Natural Science Foundation of Guangxi, China; Project (51164007) supported by the National Natural Science Foundation of China; Project (201101ZD008) supported by Educational Commission of Guangxi, China Corresponding author: LIU Jie-qun; Tel: +86-512-67164815; E-mail: ljq@suda.edu.en

DOI: 10.1016/S1003-6326(11)61497-0

2 Experimental

The LiMnPO₄/C composite material was synthesized via a sol-gel method based on citric acid. The stiochiometric amounts of $Mn(CH_3COO)_2 \cdot 4H_2O$, CH₃COOLi·2H₂O, H₃PO₄ and citric acid were dissolved together in distilled water. The PEG400 was added into the aqueous solution. The pH of solution was controlled at 10 by NH₃·H₂O. With stirring at 60 °C, the gel was obtained. After drying at 60 °C for 48 h, the precursor powder was sintered at 400–600 °C for 5–15 h under argon atmosphere.

Powder X-ray diffraction (XRD, X'Pert Pro) using Cu K_a radiation over the 2θ range of 10° – 80° with a step size of 0.02° was employed to identify the crystalline phase of the synthesized materials. The particle morphologies of the powders were observed using scanning electron microscope (SEM, JSM-6380LV). The electrochemical characterization was performed using CR2025 coin-type cell. For positive electrode fabrication, the prepared active material LiMnPO₄ was mixed with 10% carbon black and 10% polyvinylidene fluoride in N-methyl pyrrolidinone until slurry was obtained. And then the blended slurry was pasted onto an aluminum current collector, and the electrode was dried at 120 °C for 4 h in vacuum. The cathode were punched into circular discs with a diameter of 1.2 cm. The test cell consisted of the positive electrode and lithium foil negative electrode separated by a porous polypropylene film, and 1 mol/L LiPF₆ in EC+EMC+DMC (1:1:1 in volume) as the electrolyte. The assembly of the cells was carried out in a dry Ar-filled glove box. The cells were charged and discharged over a voltage range of 2.75-4.50 V versus Li/Li⁺ electrode on a battery tester (BTS-5V3A) at 0.05C rate. The cyclic voltammogram (CV) was investigated by electro-chemical workstation (CHI660A). The CV was tested at a scanning rate of 0.1 mV/s in the voltage range of 2.5-4.5 V.

3 Results and discussion

3.1 TG-DTA curves of precursor

TG–DTA curves for the gel precursor operated at a temperature of 25–1000 °C are shown in Fig. 1. As shown in DTA curve, an endothermic peak is observed at 160 °C, due to the process about thermal decomposition of ammonium salt and organic matter. About 10% of mass loss is observed during the temperature sweep to 160 °C. It can be seen that the mass loss is about 10% in the second mass loss temperature range of 160–200 °C. In the temperature range, citric acid begins the decarboxylation reaction, which is an exothermic

Fig. 1 TG-DTA curves of precursor

reaction. As temperature increases to 300 °C, citric acid begins to burn and release heat. Therefore, a little exothermic peak can be observed at about 300 °C in DTA curve. Meanwhile, about 20% of mass loss is yielded during this combustion process. When temperature increases to about 400 °C, LiMnPO₄/C is primarily formed and about 50% mass retains in the final product. So, LiMnPO₄/C begins to form at 400 °C. It can be known that the synthesis temperature of LiMnPO₄/C is significantly reduced by sol–gel method.

3.2 XRD patterns of synthesized LiMnPO₄/C samples

X-ray diffraction (XRD) was adopted to investigate the effects of different sintering temperatures and time on crystal structure of LiMnPO₄/C. Figure 2 shows the XRD patterns of LiMnPO₄/C samples calcined at different temperatures. The single olivine phase in LiMnPO₄ can be observed in three XRD patterns, and no impurity peak

Fig. 2 XRD patterns of LiMnPO₄/C samples calcined at different temperatures for 10 h: (a) 400 °C; (b) 500 °C; (c) 600 °C

can be seen. Therefore, it is able to obtain the pure $LiMnPO_4/C$ via a sol-gel route at three different temperatures. But, in Fig. 2(a), intensity of diffraction peaks is too low, resulting from the low temperature (e.g. 400 °C) making a poor crystallinity of $LiMnPO_4/C$. The diffraction peaks of $LiMnPO_4/C$ synthesized at 500 °C are sharper and narrower compared with others. Therefore, the well crystal structure of $LiMnPO_4/C$ can be obtained at 500 °C. The precursor of $LiMnPO_4/C$ is dispersed into the molecular level in sol-gel reaction. Then, in the sintering process, these uniform particles can be heated plenty and get a complete reaction.

Figure 3 illustrates that XRD patterns of LiMnPO₄/C samples calcined at 500 °C for different time. With increasing the calcination time, an apparent increase of intensity of diffraction peaks can be seen in Fig. 3. As shown in Fig. 1(a), intensity of diffraction peaks is low due to the fact that precursor powders cannot get enough time to form well crystal. Over calcination time of 10 h, the diffraction peaks of samples are sharp and narrow. Owing to the extension of sintering time, LiMnPO₄/C particles can crystallize perfectly.

Fig. 3 XRD patterns of LiMnPO₄/C samples calcined at 500 °C for different time: (a) 5 h; (b) 10 h; (c) 15 h

3.3 SEM images of synthesized LiMnPO₄/C samples

Figure 4 shows that SEM images of LiMnPO₄/C samples calcined at different temperatures for 10 h. In Fig. 4, LiMnPO₄/C particles gradually become larger when sintering temperature increases. This is attributed to that crystal particles grow so fast at high calcination temperature that large-sized particle can be obtained. As seen in Fig. 4(a), LiMnPO₄/C particles get incomplete growth at 400 °C. However, petal-like particles distribute evenly in Fig. 4(b). The decomposition of citric acid at 500 °C can improve the morphology of LiMnPO₄/C. LiMnPO₄/C particles obtained at 600 °C are

observed so much agglomeration that its conductivity will perform poor. The effects of calcination time on LiMnPO₄/C morphology are performed in Fig. 5. When calcination time is 5 h, particle sizes are large in Fig. 5(a). It is attributed to that the short calcination time is hard to form small and uniform particles, while long calcination time is not favor to the conformation of LiMnPO₄/C particles. The agglomeration can be observed in Fig. 5(c). However, optimal particles are distributed uniformly as Petal-shaped in Fig. 5(b). In summary, the LiMnPO₄/C sample synthesized at 500 °C for 10 h has the perfect crystal structure and morphology. The decomposition of citric acid can also control the particle size of LiMnPO₄/C. Lithium ion diffusion and conductivity of LiMnPO₄ can be enhanced via the sol-gel route based on citric acid.

Fig. 4 SEM images of LiMnPO₄/C samples calcined at different temperatures for 10 h: (a) 400 °C; (b) 500 °C; (c) 600 °C

3.4 Electrochemical characteristics

The first charge-discharge curves of LiMnPO₄/C samples synthesized at different temperatures are

Fig. 5 SEM images of LiMnPO₄/C samples calcined at 500 °C for different time: (a) 5 h; (b) 10 h; (c) 15 h

illustrated in Fig. 6. The LiMnPO₄/C samples demonstrate a reversible initial discharge capacity of 110.8 mA·h/g at 400 °C, 122.6 mA·h/g at 500 °C and 114.7 mA·h/g at 600 °C. The cycling results of three samples are shown in Fig. 7. After 30 cycles, it retained 112.4 mA·h/g at 500 °C. The capacities of two other samples synthesized at 400 °C and 600 °C reduced so rapidly, and retained respectively 100.3 mA·h/g and 104.3 mA·h/g after 30 cycles.

The first charge–discharge curves of LiMnPO₄/C samples calcined at 500 °C with different calcination time are illustrated in Fig. 8. And the results of cycling performance are shown in Fig. 9. The curves present that the good charge–discharge performance is obtained for 10 h, such as the initial discharge capacity of 122.6 mA·g/h and residual capacity of 112.4 mA·h/g after 30 cycles. The LiMnPO₄/C sintered for 5 h has the initial discharge capacity of 100.4 mA·h/g after 30 cycles. However, the first

Fig. 6 First charge–discharge curves of LiMnPO₄/C samples calcined for 10 h at different temperatures: (a) 400 °C; (b) 500 °C; (c) 600 °C

Fig. 7 Electrochemical cycling performance of LiMnPO₄/C samples calcined for 10 h at different temperatures: (a) 400 °C; (b) 500 °C; (c) 600 °C

Fig. 8 First charge–discharge curves of LiMnPO₄/C samples calcined at 500 °C for different time: (a) 5 h; (b) 10 h; (c) 15 h

discharge capacity of the sample calcined for 15 h is $115.7 \text{ mA}\cdot\text{h/g}$, retains at 104.5 mA·h/g after 30 cycles.

The CV curves of LiMnPO₄/C are illustrated in Fig. 10. The reduction and oxidation peak positions of LiMnPO₄/C are located at 3.957 V and 4.362 V, and the difference between reduction and oxidation peak of LiMnPO₄/C is 0.405 V. Carbon monoxide released by citric acid in sintering process can maintain the stability of Mn²⁺. Hence, it reveals that LiMnPO₄/C prepared by sol–gel reaction has a good electrochemical reversibility.

Fig. 9 Electrochemical cycling performance of LiMnPO₄/C samples calcined at 500 °C for different time: (a) 5 h; (b)10 h; (c) 15 h

Fig. 10 Cyclic voltammogram curve of LiMnPO₄/C

4 Conclusions

1) LiMnPO₄/C cathode materials were synthesized via a sol-gel route based on citric acid.

2) LiMnPO₄/C synthesized at a low temperature of 500 °C for 10 h has an appropriate particle size, while the particle diameter is well-distributed. It performs the best discharge capacity of 122.6 mA·h/g at 0.05*C* and the retaining capacity of 112.4 mA·h/g over 30 cycles. The CV shows a good electrochemical reversibility of LiMnPO₄/C.

3) The conductivity and reversibility of $LiMnPO_4/C$ are commendably enhanced, by sol-gel route based on citric acid.

References

- PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive–Electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144(4): 1188–1194.
- [2] YIN Yan-hong, LI Shao-yu, YAN Lin-lin, ZHANG Hui-shuang,

2540

YANG Shu-ting. Modified carbothermal reduction method for synthesis of LiFePO₄/C composite [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 621-626.

- [3] KANG B, CEDER G. Battery materials for ultrafast charging and discharging [J]. Nature, 2009, 458: 190–193.
- [4] GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na⁺-ion transport in skeleton structures [J]. Mater Res Bull, 1976, 11(2): 203–220.
- [5] BYKOV A B, CHIRKIN A P, DEMYANETS L N, DORONIN S N, GENKINA E A, IVANOV-SHITS A K., KONDRATYUK I P, MAKSIMOV B A, MELNIKOV O K, MURADYAN L N, SIMONOV V I, TIMOFEEVA V A. Superionic conductors Li₃M₂(PO₄)₃ (M=Fe, Sc, Cr): Synthesis, structure and electrophysical properties [J]. Solid State Ionics, 1990, 38(1–2): 31–52.
- [6] DOAN N L, TANIGUCHI I. Cathode performance of LiMnPO₄/C nanocomposites prepared by a combination spray pyrolysis and wet ball-milling followed by heat treatment [J]. J Power Sources, 2011, 196(3): 1399–1408.
- [7] DELACOURT C, LAFFONT L, BOUCHET R, WURM C, LERICHE J B, MORCRETTE M, TARASCON J M, MASQUELIER C. Toward understanding of electrical limitations (electronic, ionic) in LiMPO₄ (M=Fe, Mn) electrode materials [J]. J Electrochem Soc, 2005, 152(5): 913–921.
- [8] YONEMURA M, YAMADA A, TAKEI Y, SONOYAMA N, KANNO R. Comparative kinetic study of olivine LiMPO4 (M= Fe, Mn) [J]. J Electrochem Soc, 2004, 151(9): 1352–1356.
- [9] WANG D Y, BUQA H, CROUZET M, DEGHENGHI G, DREZEN

T, EXNAR I, KWON N H, MINERS J H, POLETTO L, GRÄTZEL M. High-performance, nano-structured LiMnPO₄ synthesized via a polyol method [J]. J Power Sources, 2009, 189(1): 624–628.

- [10] SHIRATSUCHI T, OKADA S, DOI T, JAMAKI J. Cathodic performance of LiMn_{1-x}M_xPO₄ (M=Ti, Mg and Zr) annealed in an inert atmosphere [J]. Electrochim Acta, 2009, 54(11): 3145–3151.
- [11] DOMINKO R, BELE M, GABERSCEK M, REMSKAR M, HANZEL D, GOUPIL J M, PEJOVNIK S, JAMNIK J. Porous olivine composites synthesized by sol-gel technique [J]. J Power Sources, 2006, 153(2): 274–280.
- [12] CHEN G, WILCOX J D, RICHARDSON T J. Improving the performance of lithium manganese phosphate through divalent cation substitution [J]. Electrochem Solid-State Lett, 2008, 11(11): 190–194.
- [13] BRAMNIK N N, EHRENBERG H. Precursor-based synthesis and electrochemical performance of LiMnPO₄ [J]. J Alloys Compd, 2008, 464(1-2): 259–264.
- [14] LI G, AZUMA H, TOHDA M. LiMnPO₄ as the cathode for lithium batteries [J]. Electrochem Solid-State Lett, 2002, 5(6): 135–137.
- [15] MINAKSHI M, SINGH P, THURGATE S, PRINCE K. Electrochemical behavior of olivine-type LiMnPO₄ in aqueous solutions [J]. Electrochem Solid-State Lett, 2006, 9(10): 471–474.
- [16] PIANA M, CUSHING B L, GOODENOUGH J B, PENAZZI N. A new promising sol-gel synthesis of phospho-olivines as environmentally friendly cathode materials for Li-ion cells [J]. Solid State Ionics, 2004, 175(1-4): 233–237.

溶胶-凝胶法合成 LiMnPO₄/C 锂离子电池复合材料

钟胜奎^{1,2,3}, 王 友², 刘洁群^{1,2,3}, 王 健²

桂林理工大学 广西建筑新能源与节能重点实验室,桂林 541004;
桂林理工大学 化学与生物工程学院,桂林 541004;
苏州大学 沙钢钢铁学院,苏州 215021

摘 要:通过溶胶-凝胶法合成 LiMnPO₄/C 锂离子电池复合材料,采用 XRD、SEM 和电化学性能测试对 LiMnPO₄/C 进行性能表征。XRD 研究表明,在 500 ℃ 下能够合成得到纯的 LiMnPO₄; SEM 研究表明,柠檬酸作 为螯合剂和碳源能有效地抑制 LiMnPO₄/C 颗粒的长大。在 500 ℃ 下烧结 10 h 合成的 LiMnPO₄/C 样品的电化学 性能最好,首次放电容量为 122.6 mA·h/g,以 0.05C 倍率循环 30 次后其容量为 112.4 mA·h/g。 关键词: 锂离子电池; 正极材料; 溶胶-凝胶法; LiMnPO₄/C; 电化学性能

(Edited by LI Xiang-qun)