

Available online at www.sciencedirect.com



Trans. Nonferrous Met. Soc. China 22(2012) 2439-2443

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

# Site occupation evolution of alloying elements in L1<sub>2</sub> phase during phase transformation in Ni<sub>75</sub>Al<sub>7.5</sub>V<sub>17.5</sub>

ZHANG Ming-yi<sup>1, 2</sup>, LIU Fu<sup>2</sup>, CHEN Zheng<sup>1</sup>, GUO Hong-jun<sup>2</sup>, YUE Guang-quan<sup>2</sup>, YANG Kun<sup>1</sup>

1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;

2. Beijing Aeronautical Science and Technology Research Institute,

Commercial Aircraft Corporation of China Ltd., Beijing 100083, China

Received 9 July 2012; accepted 1 August 2012

**Abstract:** Correlation between site occupation evolution of alloying elements in  $L_{12}$  phase and growth of  $DO_{22}$  phase in  $Ni_{75}Al_{7.5}V_{17.5}$  was studied using microscopic phase field model. The results demonstrate that the growing process of  $DO_{22}$  phase can be divided into two stages. At the early stage, composition in the centre part of  $L_{12}$  phase almost remains unchanged, and the nucleation and growth of  $DO_{22}$  phase is controlled by the decrease of interface between  $L_{12}$  phases. At the late stage, part of V for growth of  $DO_{22}$  phase is supplied from the centre part of  $L_{12}$  phase and mainly comes from Al sublattice, the excess Ni spared from the decreasing  $L_{12}$  phase migrates into the centre part of  $L_{12}$  phase and occupies the Ni sublattices exclusively, while the excess Al mainly occupies the Al sublattice. At the late stage, the growth of  $DO_{22}$  phase is controlled by the excess and ternary additions in the centre part of  $L_{12}$  phase.

Key words: nickel based superalloys; Ni<sub>75</sub>Al<sub>7.5</sub>V<sub>17.5</sub> alloy; phase transformation; micro-phase field; grain growth; antisite defect

#### **1** Introduction

Site occupation behavior of alloying elements (including site preference of ternary alloying elements and antisites of constituent elements) in intermetallic compounds and their effects on physical property are subjects of not only great practical interests but also fundamental theoretical interests [1,2]. Site preference of alloying elements can be affected by changing temperature [3,4], composition [5,6], or magnetism [7]. The performance of alloy is strongly influenced by site preference of ternary additions and antisite atoms. CHIBA et al [8] found that when the ternary addition preferentially substitutes Ni on the face centered sites in Ni<sub>3</sub>Al, the ductility of Ni<sub>3</sub>Al can be improved significantly. Studies also demonstrate that site preference of alloying elements affects the solute segregation strongly [9,10]. However, to our best knowledge, attention has not been paid to the correlation between site occupation evolution of alloying elements and phase transformation. An understanding of the site occupation behavior of alloying elements during phase transformation is extremely useful in order to control the microstructure and to improve the physical properties of alloys.

The phase transformation in  $Ni_{75}Al_xV_{25-x}$  alloys during aging process has been studied extensively both experimentally and theoretically. Most of the studies are focused on kinetics of phase separation and microstructure evolution [11–13]. The atomic ordering and composition clustering process were studied by PODURI and CHEN [14] and HOU et al [15], and LI et al [16] investigated the coarsening behaviors of  $L_{1_2}$  and  $DO_{22}$  in Ni<sub>75</sub>Al<sub>x</sub>V<sub>25-x</sub> alloys systematically. Few studies are focused on the correlation between the behavior of interfaces and phase transformation in Ni<sub>75</sub>Al<sub>x</sub>V<sub>25-x</sub> alloys [17-19]. However, the mechanism and kinetics of phase transformation between L1<sub>2</sub> and DO<sub>22</sub> still need further understanding. In this work, site occupation behavior of alloying elements in L1<sub>2</sub> phase during phase transformation from L12 to DO22 in Ni75Al7.5V17.5 was

Corresponding author: ZHANG Ming-yi; Tel: +86-29-88486023; E-mail: zmy1688@gmail.com DOI: 10.1016/S1003-6326(11)61482-9

Foundation item: Projects (50941020, 10902086, 50875217, 20903075) supported by the National Natural Science Foundation of China; Projects (SJ08-ZT05, SJ08-B14) supported by the Natural Science Foundation of Shaanxi Province, China

2440

studied, and their correlation was discussed. To our best knowledge, few studies have been carried out to study the kinetics of phase transformation by investigating the site occupation evolution of alloying elements at atomistic scale using a numerical simulation method. And understanding the correlation between site occupation behavior of alloying elements and growth of the second phase would make us know the kinetics of phase transformation better.

### 2 Microscopic phase-field model

The microscopic phase-field model describes the evolution of site occupation probability from the non-equilibrium distribution to an equilibrium one. It is firstly proposed by KHACHATURYAN [20] and developed by PODURI and CHEN [14] for the ternary alloy system. Equations for ternary alloy systems are written as:

$$\begin{cases} \frac{\mathrm{d} P_{\mathrm{A}}(r,t)}{\mathrm{d} t} = \frac{1}{k_{\mathrm{B}}T} \sum_{r'} \left[ L_{\mathrm{AA}}(r-r') \frac{\partial F}{\partial P_{\mathrm{A}}(r',t)} + L_{\mathrm{AB}}(r-r') \frac{\partial F}{\partial P_{\mathrm{B}}(r',t)} \right] \\ \frac{\mathrm{d} P_{\mathrm{B}}(r,t)}{\mathrm{d} t} = \frac{1}{k_{\mathrm{B}}T} \sum_{r'} \left[ L_{\mathrm{BA}}(r-r') \frac{\partial F}{\partial P_{\mathrm{A}}(r',t)} + L_{\mathrm{BB}}(r-r') \frac{\partial F}{\partial P_{\mathrm{B}}(r',t)} \right] \end{cases}$$
(1)

For ternary systems,  $P_{\rm C}(r, t) = 1-P_{\rm A}(r, t)-P_{\rm B}(r, t)$ , where  $P_{\alpha}(r, t)$  ( $\alpha$ =A, B or C) represent the probabilities of finding atom  $\alpha$  at a given lattice site r at a given time t, t is the reduced time,  $L_{\alpha\beta}(r-r')$  ( $\alpha$  and  $\beta$ =A, B or C) is the kinetic coefficient which is proportional to the probability of elementary diffusional jumps from site r to r' per unit time, and F is the total Helmholtz free energy of the system based on the mean-field approximation, which can be written as a function of single site occupation probability:

$$F = -\frac{1}{2} \sum_{r} \sum_{r'} \left[ V_{AB}(r - r') P_A(r) P_B(r') + V_{BC}(r - r') P_B(r) P_C(r') + V_{AC}(r - r') P_A(r) P_C(r') \right] + k_B T \sum_{r} \left[ P_A(r) \ln(P_A(r)) + P_B(r) \ln(P_B(r)) + P_C(r) \ln(P_C(r)) \right]$$
(2)

where the effective pair interaction  $V_{\alpha\beta}$  is deduced from pair interaction  $\omega_{\alpha\beta}$  and  $V_{\alpha\beta} = \omega_{\alpha\alpha} + \omega_{\beta\beta} - 2\omega_{\alpha\beta}$ .

Equation (1) is solved in the reciprocal space using the Modified Euler's method with the time increment equal to 0.0002. The real-space atomic site occupation probability of alloying elements is obtained by the Back-Fourier transformation of the solution of Eq. (1). The effective pair interactions (meV/atom), which have been used by PODURI and CHEN [14] and ZAPOLSY et al [21] in previous works and proved to fit for the real Ni–Al–V alloy system at a high temperature, are used as our simulation inputs. The applications of microscopic phase-field model on microstructure evolution of Ni-based alloys had shown an excellent agreement both with experiment results [21] and other simulation results [13].

#### **3** Results and discussion

 $Ni_{75}Al_{7.5}V_{17.5}$  aged at 1185 K was simulated using microscopic phase-field model, and microstructure evolution during phase transformation is shown in Fig. 1. In Fig. 1, black sites represent Ni, gray sites represent V and white sites represent Al. L1<sub>2</sub>-Ni<sub>3</sub>Al phases precipitate from the disordered phase first. And then, accompanying the formation and growth of L1<sub>2</sub> ordered domains, V atoms start to segregate to the interfaces of L1<sub>2</sub> ordered phase while the Al atoms deplete from the interfaces. As the degree of V segregation at the interfaces increases, the DO<sub>22</sub>-Ni<sub>3</sub>V ordered domains start to nucleate and grow at the interfaces of the L1<sub>2</sub> ordered phase. At last, a two-phase mixture is formed.

Figure 2 gives the volume fraction variation of L1<sub>2</sub> and DO<sub>22</sub> phases during aging process. The volume of L12 phase decreases accompanied with the volume of DO<sub>22</sub> phase increasing. This verifies that DO<sub>22</sub> phases grow up at the expense of  $L1_2$  phases after  $DO_{22}$  phases precipitate at the interfaces. As the volume of  $L1_2$  phase decreases, Ni and Al will be spared from the decreasing L1<sub>2</sub> phase, whereas the growth of DO<sub>22</sub> phase needs Ni and V. It has been reported that the content of Ni in L12 phase is slightly higher than that in DO<sub>22</sub> phase, and the concentration of ternary addition V is about 10% (mole fraction) in  $L1_2$  phase [21]. Thus, the Ni spared by the decreasing L1<sub>2</sub> phase can satisfy the need of Ni for DO<sub>22</sub> growth, and part of V for  $DO_{22}$  growth can be supplied from the decreasing  $L1_2$  phase. However, where does the other V come from to satisfy the growth of DO<sub>22</sub>, and where does the Al go away when the volume of  $L1_2$ phase decreases? To answer this question, content evolution of alloying elements in L12 phase was studied.

Considering the  $L1_2$  phase in the vicinity of interface will transform into  $DO_{22}$  phase, only the content evolution of alloying elements in the centre part of  $L1_2$  phase (as the square denoted by arrow *A* in Fig. 1(f)) was investigated. Figure 3 shows that contents of Ni and Al in  $L1_2$  phase increase and content of V decreases during the phase transformation. The content of



**Fig. 1** Microstructure evolution during phase transformation from disordered (FCC-A1) phase to ordered (L1<sub>2</sub> and DO<sub>22</sub>) phase of Ni<sub>75</sub>Al<sub>7.5</sub>V<sub>17.5</sub> aged at 1185 K: (a) *t*=8000; (b) *t*=20000; (c) *t*=70000; (d) *t*=100000; (e) *t*=200000; (f) *t*=400000



Fig. 2 Volume fraction variation of L1 $_2$  and DO $_{22}$  phases of Ni $_{75}Al_{7.5}V_{17.5}$  aged at 1185 K



Fig. 3 Composition evolution of centre part of  $L1_2$  phase in  $Ni_{75}Al_{7.5}V_{17.5}$  aged at 1185 K

V is higher than that of Al in the centre of  $L1_2$  phase first, and it is reversed at later. This illustrates that part of V for growth of DO<sub>22</sub> phase can be supplied from the centre of L1<sub>2</sub> phase, and the Al and Ni spared from decreasing L1<sub>2</sub> phase migrate from the interface to the centre of L1<sub>2</sub> phase.

Figure 4 illustrates the relationship between volume fraction of DO<sub>22</sub> phase and composition of L1<sub>2</sub> phase. From Fig. 4, the growth of  $DO_{22}$  phase can be divided into two stages. At the early stage, volume fraction of  $DO_{22}$  phase increases from about 0.05 to 0.35 quickly, and the composition of the centre part of  $L1_2$  phase almost remains unchanged. As mentioned above, the decreasing of L1<sub>2</sub> phase cannot supply enough V for the growth of DO<sub>22</sub> phase. However, V segregates at the interface of L1<sub>2</sub> phase, and the amount of interfaces between L1<sub>2</sub> phases decreases quickly with the nucleation and growth of DO<sub>22</sub> phase. Thus, the V for growth of DO<sub>22</sub> phase at the early stage is supplied from both the decreasing L1<sub>2</sub> phase and interfaces between  $L1_2$  phases. At the late stage, volume fraction of  $DO_{22}$ phase grows up slowly from 0.35 to about 0.48, accompanied with the contents of Al and Ni increasing, and content of V deceasing in the centre part of L1<sub>2</sub> phase. This implies that the growth of DO<sub>22</sub> phase at the late stage is controlled by the content evolution of alloying elements in the centre part of  $L1_2$  phase.



Fig. 4 Variation of composition of  $L1_2$  phase with volume fraction of DO<sub>22</sub> phase in Ni<sub>75</sub>Al<sub>7.5</sub>V<sub>17.5</sub> aged at 1185 K

As the L1<sub>2</sub> phase consists of two sublattices, content evolution of alloying elements at both Ni and Al sublattices in the centre of L1<sub>2</sub> phase was studied. Figure 5 shows that the ternary addition V prefers to occupy the Al sublattice, which is in consistent with the previous study [22]. As the DO<sub>22</sub> phase grows up, the content of host atoms Al<sub>Al</sub> (Al<sub>Al</sub> denotes the Al atom at the Al sublattice) and Ni<sub>Ni</sub> increase, the contents of ternary additions of V<sub>Ni</sub> and V<sub>Al</sub> decrease, and content of antisite atoms Ni<sub>Al</sub> decreases but that of Al<sub>Ni</sub> increases.



Fig. 5 Site occupation of alloying elements in  $L_{12}$  phase during phase transformation from  $L_{12}$  to  $DO_{22}$  in  $Ni_{75}Al_{7.5}V_{17.5}$ 

The site occupation decrement of Ni<sub>Ni</sub> is larger than the site occupation decrement of Ni<sub>Al</sub>, thus content of Ni in the centre of  $L1_2$  phase increases. This demonstrates that the excess Ni from decreasing L1<sub>2</sub> phase occupies the Ni sublattice. The site occupation decrement of  $V_{Ni}$  is less than that of  $V_{Al}$ , and the site occupation increment of Al<sub>Ni</sub> is less than that of Al<sub>Al</sub>. This demonstrates that part of V for growth of DO22 phase supplied from the centre of L1<sub>2</sub> phase mainly comes from Al sublattice, and Al from decreasing L1<sub>2</sub> phase mainly occupies the Al sublattice. Considering the discussion above, it can be concluded that the growth of  $DO_{22}$  phase is mainly controlled by the decrease of interface between L12 phases at the early stage, but at the late stage, it is mainly controlled by the evolution of antisite atoms and ternary additions in the centre part of L1<sub>2</sub> phase.

#### **4** Conclusions

1) Correlation between site occupation evolution of alloying elements in  $L1_2$  phase and volume of  $DO_{22}$  phase indicates that the process of growth of  $DO_{22}$  phase can be divided into two stages.

2) At the early stage, composition in the centre part of  $L1_2$  phase almost remains unchanged, and the nucleation and growth of  $DO_{22}$  phase is controlled by decrease of interface between  $L1_2$  phases. At the late stage, the growth of  $DO_{22}$  phase is controlled by site occupation evolution of alloying elements in the centre part of  $L1_2$  phase.

3) At the late stage, Ni and Al spared from decreasing  $L1_2$  phase migrate from the interfaces between  $L1_2$  and  $DO_{22}$  phases to the centre of  $L1_2$  phase, and the excess Ni exclusively occupies the Ni sublattice and Al mainly occupies the Al sublattice. Part of V for growth of  $DO_{22}$  phase is supplied from the centre part of  $L1_2$  phase and mainly comes from Al sublattice.

2442

#### References

- PRINS S, ARROYAVE R, LIU Z K. Defect structures and ternary lattice site preference of the B2 phase in the Al-Ni-Ru system [J]. Acta Mater, 2007, 55: 4781-4787.
- [2] NISHINO Y, KUMADA C, ASANO A. Phase stability of Fe<sub>3</sub>Al with addition of 3d transition elements [J]. Scripta Mater, 1997, 234–236: 461–466.
- [3] RUBAN A V, SKRIVER L. Calculated site substitution in ternary γ'-Ni<sub>3</sub>Al: Temperature and composition effects [J]. Phys Rev B, 1997, 55: 856–874.
- [4] JIANG C. Site preference of transition-metal elements in B2 NiAl: A comprehensive study [J]. Acta Mater, 2007, 55: 4799–4806.
- [5] ZHANG J, CHEN Z, LU Y L, ZHANG M Y, WANG Y X. Microscopic phase field study of the antisite defect of Ni<sub>3</sub>Al in binary Ni–Al alloys [J]. Science in China Series G: Physics, Mechanics & Astronomy, 2010, 53(11): 2047–2053.
- [6] ALMAZOUZI A, NUMAKURA H, KOIWA M, HONO K, SAKURA T. Site occupation preference of Fe in NiAl: An atom-probe study [J]. Intermetallics, 1997, 55: 37–43.
- [7] SLUTIER M H F, KAWAZOE Y. Site preference of ternary additions in Ni<sub>3</sub>Al [J]. Phys Rev B, 1995, 51: 4062–4073
- [8] CHIBA A, HANADA S, WATANABE S, ABE T, OBANA T. Relation between ductility and grain boundary character distributions in Ni<sub>3</sub>Al [J]. Acta Mater, 1994, 42: 1733–1738.
- [9] KITASHIMA T, YOKOKAWA T, YEH A C, HARADA H. Analysis of element-content effects on equilibrium segregation at γ-γ' interface in Ni-base superalloys using the cluster variation method [J]. Intermetallics, 2008, 16: 779–784.
- [10] MOSCA H O, BOZZOLO G, GARCÉS J E. Site preference, size effects and segregation in RuAlB alloys [J]. Scripta Materialia, 2008, 58: 1025–1028.
- [11] BENDERSKY L A, BIANCANIELLO F S, WILLIAMS M E. Evolution of the two-phase microstructure L1<sub>2</sub>+DO<sub>22</sub> in near-eutectoid Ni<sub>3</sub>(Al, V) alloy [J]. J Mater Res, 1994, 9: 3068–3082.

- [13] PAREIGE C, BLAVETTE D. Simulation of the FCC-FCC+ L1<sub>2</sub>+DO<sub>22</sub> kinetic reaction [J]. Scripta Mater, 2001, 44: 243–247.
- [14] PODURI R, CHEN L Q. Computer simulation of atomic ordering and compositional clustering in the pseudobinary Ni<sub>3</sub>Al–Ni<sub>3</sub>V system [J]. Acta Mater, 1998, 46: 1719–1729.
- [15] HOU H, ZHAO Y H, ZHAO Y H. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni–Al-based alloys by the phase-field model [J]. Mater Sci Eng A, 2009, 499: 204–207.
- [16] LI Y S, CHEN Z, LU Y L, XU G D. Dynamic scaling behaviour of late-stage phase separation in Ni<sub>75</sub>Al<sub>x</sub>V<sub>25-x</sub> alloys [J]. Chin Phys B, 2007, 16: 854–861.
- [17] TANIMURA M, HIRATA A, KOYAMA Y. Kinetic process of the phase separation in the alloy Ni<sub>3</sub>Al<sub>0.52</sub>V<sub>0.48</sub> [J]. Phys Rev B, 2004, 70: 094111.
- [18] ZHANG Ming-yi, CHEN Zheng, WANG Yong-xin, MA Guang, LU Yan-li, FAN Xiao-li. Effect of atomic structure on migration characteristic and solute segregation of ordered domain interfaces formed in Ni<sub>75</sub>Al<sub>x</sub>V<sub>25-x</sub> [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 604–611.
- [19] ZHANG Ming-yi, CHEN Zheng, WANG Yong-xin, LU Yan-li, ZHANG Li-peng, ZHAO Yan. Microscopic phase field simulation of ordered domain interfaces formed between DO<sub>22</sub> phases along [100] direction [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 686–693.
- [20] KHACHATURYAN A G Theory of structural transformations in solids [M].New York: Wiley, 1983.
- [21] ZAPOLSKY H, PAREIGE C, MARTEAU L, BLAVETTE D, CHEN L Q. Atom probe analyses and numerical calculation of ternary phase diagram in Ni–Al–V system [J]. Calphad, 2001, 25: 125–134.
- [22] JIANG C, GLEESON B. Site preference of transition metal elements in Ni<sub>3</sub>Al [J]. Scripta Mater, 2006, 55: 433–436.

## Ni<sub>75</sub>Al<sub>7.5</sub>V<sub>17.5</sub>相变过程中 L1<sub>2</sub>相合金元素 占位几率演化的微观相场模拟

张明义<sup>1,2</sup>,刘 富<sup>2</sup>,陈 铮<sup>1</sup>,郭红军<sup>2</sup>,岳广全<sup>2</sup>,杨 坤<sup>1</sup>

1. 西北工业大学 凝固技术重点实验室, 西安 710072;

2. 中国商用飞机有限责任公司 北京民用飞机技术研究中心,北京100083

摘 要: 基于微观相场模型,研究 Ni<sub>75</sub>Al<sub>7.5</sub>V<sub>17.5</sub> 合金在相变过程中 Ll<sub>2</sub>相内合金元素演化与 DO<sub>22</sub>相生长之间的关系。研究表明,在 Ll<sub>2</sub>相向 DO<sub>22</sub>相转变的过程中,DO<sub>22</sub>相的长大可以分为两阶段。在早期,Ll<sub>2</sub>相内合金元素的成分基本不变,DO<sub>22</sub>相的长大主要受 Ll<sub>2</sub>相间有序畴界的减少所控制。在后期,DO<sub>22</sub>相长大所需的 V 一部分来自 Ll<sub>2</sub>相内部,一部分来自 Ll<sub>2</sub>相体积的减少,其中,相内部为 DO<sub>22</sub>相长大所提供的 V 则主要来自 Al 格点位置,由于 Ll<sub>2</sub>相体积减少而富余的 Al 向 Ll<sub>2</sub>相内部扩散迁移并主要占据 Al 格点位置,富余的 Ni 则同时向 Ll<sub>2</sub>相内部和 DO<sub>22</sub>相内部扩散,主要占据 Ll<sub>2</sub>相的 Ni 位置。DO<sub>22</sub>相长大的后期主要受 Ll<sub>2</sub>相内反位缺陷和第三组元的演化所控制。

关键词: 镍基合金; Ni<sub>75</sub>Al<sub>7.5</sub>V<sub>17.5</sub>合金; 相变; 微观相场; 晶粒生长; 反位缺陷