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Abstract: Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for 
non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the 
accurate “temperature integral” approximations are incorporated to obtain an extended analytical model. Numerical approach 
demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement 
with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical 
model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the 
new model are more accurate and reasonable than those from the original analytical model. 
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1 Introduction 
 

In studies of solid-state phase transformations 
involving nucleation and growth, the classical 
Johnson-Mehl-Avrami (JMA) approach [1,2] or modified 
JMA approach [3,4] always plays a central role. The 
JMA equation can only be validated under certain 
condition, in particular for nucleation. Under these 
conditions, the kinetic parameters should be constant 
during the course of the transformation. Recently, a more 
general modular, analytical phase transformation model 
[5,6], has been proposed which recognizes the three 
mechanisms, nucleation, growth, and impingement of 
growing new phase particles, as entities that can be 
modeled separately. The model leads to equations for the 
degree of transformation which have the structure of 
JMA equation but with variable kinetic parameters. The 
analytical model has been successfully used for 
description of the crystallization of some amorphous 
alloys [7,8]. 

Actually, an assumption, T>>T0 (T and T0 represent 
the transformation temperature and the initial 
transformation temperature, respectively) is made in 
deducing the analytical model [5] for non-isothermal 

transformation, so, in the temperature range considered, 
the values of the terms involving T0 can be neglected in 
comparison with the corresponding terms involving T. 
Neglecting terms involving T0 can also be found in many 
commonly used methods of non-isothermal kinetics 
analysis [9,10]. During the last decade, some scientists 
[11,12] realized that in a limited number of cases 
including low temperature reactions and multi-stage 
reactions [13] (T0 for the consecutive second or third, etc. 
transformation is relative high), the effect due to T0 terms 
cannot be neglected in the kinetic analysis. Furthermore, 
in deducing the analytical model for non-isothermal 
transformation, the so-called “temperature integral” [12] 
or “general temperature integral” [14] cannot be solved 
analytically and has to be approximated. The 
approximation applied to analytical model is too coarse 
to give a sufficiently precise description for 
non-isothermal transformation. 

As the reasons mentioned above, the original 
analytical model cannot be used widely. In this work, the 
analytical model is extended to a more general case by 
using a new analytical approach. The precision of the 
new model is also evaluated by the numerical calculation. 
Because it incorporates the effect of T0 and the accurate 
“temperature integral” approximation, the new model  
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can be applied to describing precisely the kinetic 
behavior of the transformation with high initial 
transformation temperature. 
 
2 Theoretical background 
 
2.1 Modes of nucleation 

The term “site saturation” is used here for the case 
of initial nucleation site saturation where all nuclei are 
present at T0 already. This implies for the nucleation rate 
at time τ [8]: 
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with δ denotes Dirac functions; N* is the number of 
nuclei per unit volume; Φ (=dT/dτ=dT/dt) is the constant 
heating rate with T(τ)=T0+Φτ. 

The “continuous nucleation” rate per unit volume 
(i.e. the rate of formation of particles or nuclei of 
supercritical size) is at a large undercooling only 
determined by the rate of the jumping of atoms through 
the interface between the nucleus of critical size and the 
parent phase, which can be given by an Arrhenius term: 
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where N0 is a temperature-independent pre-exponential 
factor, and QN is the temperature-independent activation 
energy for nucleation. 

Here, a short introduction is given for (more general) 
mixed nucleation in non-isothermal transformation. 
“Mixed nucleation” represents a combination of site 
saturation and continuous nucleation modes: the 
nucleation rate is equal to some weighed sum of the 
nucleation rates according to continuous nucleation and 
site saturation [8]. Hence, 
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where N* and N0 include the relative contributions of the 
two modes of nucleation. 
 
2.2 Modes of growth 

The “diffusion-controlled” and the “interface- 
controlled” growth modes can be given in a compact 
form. At time t (i.e. temperature T(t)=T0+Φ(t)) the 
volume Y of a particle nucleated at time τ (i.e. 
temperature T(τ)) is given by [8]: 
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where g is a particle-geometry factor; ν is the growth 

velocity; m is the growth mode parameter (m=1 for 
interface-controlled growth; m=2 for volume diffusion- 
controlled growth); d is the dimensionality of the growth 
(d=1, 2, 3) [8]. 

For a large undercooling, ν=ν0exp{−QG/[RT(t)]} 
with QG as the temperature-independent activation 
energy for growth. For interface-controlled growth, ν0 is 
a temperature-independent pre-exponential factor and QG 
represents the energy barrier at the interface. For volume 
diffusion-controlled growth, ν0 equals the pre- 
exponential factor for diffusion D0 and QG represents the 
activation energy for diffusion QD [8]. 
 
2.3 Impingement 

The number of supercritical nuclei formed in a unit 
volume at time τ during a time lapse, dT(τ)/Φ, is 
calculated by Eqs. (1)−(3) for different modes. The 
volume of each of these nuclei grows from τ (i.e. T(τ)) to 
t (i.e. T(t)) according to Eq. (4) where it is supposed that 
every particle grows into an infinitely large parent phase, 
in the absence of other growing nuclei. In this 
hypothetical case, the volume of all particles at 
temperature T, called the extended transformed volume, 
Ve, can be described as: 
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with V as the sample volume, which is supposed to be 
constant throughout the transformation. Accordingly, the 
extended transformed fraction, xe, is defined as xe=Ve/V. 

In reality, the particles do not grow individually into 
an infinitely large parent phase. A relationship between 
the real transformed fraction, f, and the extended 
transformed fraction, xe, is required. Several equations 
for different types of hard impingement were 
summarized in Ref. [8]. In this study only the mode of 
random dispersed nuclei is taken into consideration [2]: 
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3 New analytical approach 
 

Upon deriving the original model, the terms 
involving T0 are assumed as negligible, and the 
“temperature integral” and the “general temperature 
integral” are doing a coarse approximation. In this 
section, an analytical approach incorporating the effect of 
T0, the more accurate and recently proposed 
“temperature integral” approximation will be shown. 

Assuming mixed nucleation, interface-controlled 
growth, the extended volume can be given as (see    
Eqs. (3), (4) and (5)): 
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To avoid unnecessary, nonessential complications in 

the following formulas, set d/m=1 (the analytical process 
for other value of d/m is similar). Hence, Eq. (7) can be 
rewritten as: 
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To derive the analytical expression of Eq. (8), the 

so-called “temperature integral” and/or “general 
temperature integral” must be approximated. Recently, it 
has been found that the approximations in the analytical 
model could be replaced by the high accuracy 
approximations [15]. The high accuracy approximations, 
which guarantee the accuracy of the analytical 
description, for the “general temperature integral”, can 
be expressed as [14]: 
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where x=Q′/(RT) (e.g. xG=QG/(RT), xN,iG=(QN+iQG)/(RT), 
i=0, 1, 2, 3…); Q′ is the constant activation energy; M is 
a constant; pM(x) represents the function of M and x. For 
M=0, the left-hand side of Eq. (9) becomes the 
“temperature integral” [12]. It can be expressed as: 
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where q(x) represents the function of x. The formulas for 
pM(x) and q(x) are different according to the different 
approximate methods [15]. Applying the approximation 
for “temperature integral” and “general temperature 
integral”, Eq. (8) becomes, 
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To derive the original model, the terms involving T0 

in Eq. (11) are neglected. Actually, this is not the 
indispensable process to obtain the analytical solution. In 
this paper, these terms are reserved. Analogous to the 
treatment in the appendix A of Ref. [5], the explicit 
analytical expression for xe for non-isothermal 
transformation is given as: 
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with the temperature-dependent expressions for n, Q and 
K0 gathered in Table 1. In combination with different 
modes of impingement, the real transformed fraction can 
be given. Such as the impingement during randomly 
dispersed nuclei, it can be given as: 
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Clearly, the current model possesses an analogous 
form to the original model. The only different between 
these two models is the expression for Cs and Cc (see  
Ref. [5] and Table 1). As shown in Eq. (13) and Table 1, 
the original model results provided that the T0 terms are 
neglected, and coarse approximations are used (i.e. 
q(x)=1 and pM(x)=1) in the current model. 
 
4 Evaluation of extended analytical model 
 

The precision of different types of approximations 
without considering the effect of T0 has been evaluated in 
Ref. [15]. In this section, the most accuracy combination 
of “temperature integral” and “general temperature 
integral” approximation (i.e. the combination of CAI   
et al [14] as pM(x) and ÓRFÃO as q(x) [12]) will be used 
to illustrate the effect of T0. 

The transformed fraction and transformation rate 
can be numerically calculated exactly, as a function of 
temperature, on the basis of Eq. (6) by numerical 
integration of Eq. (5) for Ve. These exact results can then 
be compared with corresponding results from the 
analytical approaches. Thereby, the accuracy of different 
models is tested. Using model parameters given in Table 
2, in cases of the mixed nucleation, interface-controlled 
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Table 1 Expressions for growth exponent n, overall effective activation energy Q, and pre-exponential factor of rate constant K0 
Kinetic parameter Mixed nucleation 
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Table 2 Values of parameters used for numerical approach for 
non-isothermal transformations 

d/m 
N*/ 
m−3 

N0/ 
(m−3·s−1) 

QN/ 
(kJ·mol−1)

QG/ 
(kJ·mol−1) 

v0/ 
(m·s−1)

Ф/ 
(K·min−1)

3 1×1012 1×1020 200 300 1×108 5, 10,
20, 40

 
growth and impingement due to random nuclei 
dispersion, the transformed fraction can be predicted at 
different values of T0 by the original analytical model (i.e. 
Ref. [5]) and the current model (i.e., Eq. (13) with  
Table 1) (see Figs. 1(a)−(c)). Accordingly, the 
transformation rate can be obtained for different models 
(see Figs. 1(e)−(f)). Using the same values for the model 
parameters, the numerical calculations are performed. 

As shown in Fig.1, the original analytical model 
prediction deviates largely from exact values, and it 
becomes worse and worse with increasing T0. However, 
the current model prediction is always in good agreement 
with the numerical calculation even if for the 
transformation with high T0. It can also be seen from 
Fig.1 that the model predications without considering T0 
(i.e. the original analytical model) become better and 
better as Φ increases for a certain T0. It can be explained 

that, with increasing Φ, the temperature range for overall 
transformation increases, accordingly, the strengthen of 
T0 effect decreases. 

Evolutions of n and Q with f are shown in Fig. 2. 
For clarity, only the values for n and Q of the 
transformation with T0=1000 K and Φ=5 K/min (see  
Fig. 1(c)) are shown. It can be seen that the kinetic 
parameters for different models vary considerably. The 
deviation of transformed fraction and transformation rate 
for different models from the exact values must be 
derived from the inaccurate prediction of the kinetic 
parameters. This implies that the kinetic parameters due 
to the current analytical model should be more precise. 

 
5 Conclusions 
 

The analytical process incorporating the effect of 
the initial transformation temperature and the accurate 
“temperature integral” approximations is presented. The 
newly derived analytical model possesses an analogous 
form to the original analytical model. If the T0 terms are 
neglected and the coarse approximations for 
“temperature integral” are used in the newly derived 
analytical model, it leads to the original analytical model.  
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Fig. 1 Comparison of transformed fraction and transformation rate between model predictions, at T0=900 K (a, b), 950 K (c, d), and 
1000 K(e, f), in cases of mixed nucleation, interface-controlled growth and impingement due to random nuclei dispersion 
 

 
Fig. 2 Evolution of growth exponent n (a) and overall effective activation energy Q (b), with transformed fraction calculated by 
different models at T0=1000 K and Ф=5 K/min 
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Numerical approach has demonstrated that, once T0, as 
compared with the temperature range considered, is so 
high that cannot be neglected, the newly derived model 
prediction for transformed fraction and transformation 
rate is in better agreement with the exact numerical 
calculation than the original model prediction. And the 
kinetic parameters due to the newly derived analytical 
model are more precise. 
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摘  要：基于固态相变解析模型，提出推导非等温固态相变的转变分数的新解析方法。该方法将转变起始温度和

精确的温度积分引入到解析模型，从而得到扩展的解析模型。计算表明，扩展的解析模型能够准确地预测计算得

到的转变分数与转变速率。扩展的解析模型与原有解析模型相比，它能够更加准确地描述相变过程的动力学行为。

在转变初始温度较高的情况下，扩展的解析模型具有优越性。同时，从扩展的解析模型得到的动力学参数比原有

解析模型的更合理、准确。 

关键词：非等温转变；解析模型；转变初始温度；近似方法 
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