

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 22(2012) 1012-1017

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Behavior of CeO₂ additive in in-situ TiB₂ particles reinforced 2014 Al alloy composite

XUE Jing, WANG Jun, HAN Yan-feng, CHEN Chong, SUN Bao-de

State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

Received 21 April 2011; accepted 23 June 2011

Abstract: In-situ TiB₂ particles reinforced 2014 aluminum alloy composite was prepared using an exothermic reaction process with K_2TiF_6 and KBF_4 salts. The effects of CeO₂ additive on the microstructure and properties of in-situ TiB₂/2014 composite were investigated. The results showed that CeO₂ at high temperature exhibits the same function as Ce. When 0.5% (mass fraction) CeO₂ additive was added, the dispersion of TiB₂ particles in the matrix is improved significantly, and particles have no obvious settlement. The dispersing mechanism of TiB₂ particles in 2014 Al alloy matrix was explained. Compared with the composite without CeO₂, the hardness, tensile strength, yield strength and elongation of the composite with CeO₂ addition are greatly increased in as-cast condition.

Key words: 2014 Al alloy; TiB₂; composites; CeO₂

1 Introduction

Particles reinforced aluminum alloy matrix composites have emerged as potential alternatives to conventional Al alloy due to their high strength, hardness, modulus, wear resistance and fatigue resistance [1-6]. Among various Al matrix composites, the in-situ TiB₂ particles reinforced Al alloy composite prepared using an exothermic reaction process with K₂TiF₆ and KBF₄ salts has been the highlight of research interests in recent years, since the interfaces between TiB₂ particles and Al matrix alloy are clear and well bonded, and reaction products are easy to remove [7-12]. 2014 Al alloy is high strength and hardness (including high temperature) alloy, which is generally used in the aerospace industry for making structural components. In order to further increase the mechanical properties of 2014 Al alloy, in-situ TiB₂/2014 composite was prepared. However, a common problem associated with the TiB2/Al composites is particles agglomeration [13-17], which has deleterious effects on the properties of the composite [18]. So, the dispersion of TiB_2 particles in 2014 Al alloy matrix plays an importance role in achieving the desired properties in the material.

can improve the dispersion of TiB₂ particles in Al alloy matrix, such as Mg and Zr [19,20]. In addition, conventional secondary deformation processing methods (rolling or extrusion) were also used to improve the distribution homogeneity of the particles [16,21]. However, the report on effect of rare earth as additive on the dispersion of TiB₂ particles is relatively few. We previously reported the advantages of CeO₂ as additive during the preparation of in-situ TiB₂/Al composite [22]. In this study, in-situ TiB₂ particles reinforced 2014 Al alloy composite was successfully fabricated when 0.5% CeO₂ was added, and the behavior of CeO₂ additive in the composite was studied.

2 Experimental

In the present study, in-situ 5% (volume fraction) $TiB_2/2014$ composites with and without CeO₂ were prepared. Appropriate amount of commercial purity (CP) Al was melted in a medium frequency furnace, and a pre-weighed mixture of K₂TiF₆, KBF₄, CeO₂ powders (0.5%, mass fraction) and Na₃AlF₆ cosolvent (2%, mass fraction) was inserted in batches into molten CP aluminum by bell at 870 °C. Then the melt was stirred for 30 min using a graphite stirrer and held for 30 min until the reaction completed. The dross which floated on

Some reports showed that surface active additive

Foundation item: Project (2008AA03A239) supported by the High-tech Research and Development Program of China Corresponding author: WANG Jun; Tel: +86-21-54747387; E-mail: junwang@sjtu.edu.cn DOI: 10.1016/S1003-6326(11)61277-6

the top of the melt was decanted. When the melt temperature reached as low as 800 °C, high purity copper, Al–Mn alloy and Al–Si alloy were added into the melt, and the melt was held for 30 min until the alloys were thoroughly melted. Then the melt was stirred for 10 min and degassed using C_2Cl_6 at 730 °C. Mg was added to the melt at 730 °C. Finally, the composite melt was cast into graphite mould at room temperature.

The samples were sectioned from the same height of the cast rods with and without CeO₂ to compare the dispersion of TiB₂ particles; and the top and bottom chemical compositions of the composite melt with CeO₂ were analyzed to study the settlement of TiB₂ particles in the preparation. The composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray (EDX) microanalysis. Chemical composition was analyzed by inductively coupled mass spectrometry (ICP-MS). The hardness was tested using Vickers hardness tester at 50 N load (hence the hardness is represented as HV50). Each hardness value presented was an average of at least ten symmetrical indentations. The tensile properties were evaluated at room temperature using Zwick/Roell test machine. The tensile properties reported were the average of four tests at the same condition.

3 Results and discussion

3.1 Synthesis of TiB₂/2014 composite

The chemical compositions of the 2014 Al alloy and 5%TiB₂/2014 composite prepared in this work are given in Table 1. It can be seen that the absorption rates of Ti and B are both higher. Figure 1 shows the XRD pattern of the 5%TiB₂/2014 composite with CeO₂, which clearly indicates that the phases in the sample include mainly θ -CuAl₂, TiB₂ and α (Al), and no other discernible diffraction peaks appear. The SEM microstructures of the 5%TiB₂/2014 composite with CeO₂ are shown in Figs. 2(b) and (d). It can be observed that the particle morphology is nearly spherical and its size is less than

Table 1 Chemical compositions of 2014 Al alloy and5%TiB₂/2014 composite (mass fraction, %)

						/			
Alloy	Cu	Si	Mn	Mg	Ti	В	Ce	Fe	Al
2014	4.80	0.78	0.88	0.74	_	-	_	0.11	Bal.
5%TiB ₂ /2014	4.88	0.77	0.85	0.75	5.32	2.61	_	0.16	Bal.
5%TiB ₂ /2014+ 0.5%CeO ₂	4.85	0.75	0.91	0.79	5.27	2.52	0.41	0.12	Bal.

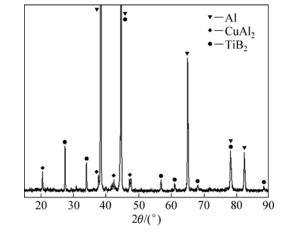


Fig. 1 XRD pattern of 5%TiB₂/2014+0.5%CeO₂ composite

2 μ m. The results suggest that TiB₂/2014 composite can be fabricated successfully when CeO₂ additive is added.

3.2 Effect of CeO₂ on dispersion of TiB₂ particles

Figure 2 shows the microstructures of the 5%TiB₂/2014 composites with and without CeO₂. From Fig. 2(a), it can be observed that θ -CuAl₂ phases with needle-shape in the composite without CeO₂ distribute uniformly in the form of semi-continuous network in the matrix, and TiB_2 particles distribute along the grain boundary in coral-like form and interweave with CuAl₂ phases. There are few scattering particles inside matrix dendrites. Figure 2(b) shows the TiB₂ particle morphology at grain boundary in the composite without CeO_2 . Most of the particles have no clear profile and exist in the form of agglomerations, which is in accordance with the previous findings [11-15]. However, when CeO₂ additive is added, the microstructures of composite have obvious change. TiB₂ particles disperse from grain boundary to inner grain gradually, and a large number of scattering particles inside matrix dendrites can be observed despite a small number of agglomerations still exist, as shown in Fig. 2(c). Using image processing program in MATLAB to count the particles with the same grayscale value in Figs. 2(a) and (c), the result indicates that the coverage area of the particles in matrix is increased by 76.4% compared with that of the composite without CeO₂. Figure 2(d) shows the TiB₂ particle morphology in the composite with CeO₂. Compared with Fig. 2(b), most of the TiB₂ particles exist in isolation, and particles with clear profile are close to spherical with less than 2 µm in size. In addition, the interfaces between TiB₂ particles and Al 2014 matrix alloy are clear and clean.

The microstructures of the composite without CeO_2 indicate that TiB₂ particles prepared using in-situ

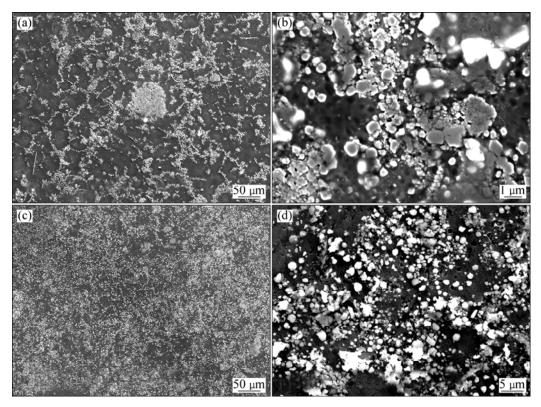


Fig. 2 SEM microstructures of 5%TiB₂/2014 composite: (a, b) Without CeO₂; (c, d) With 0.5%CeO₂

reaction have higher surface energy and the energy is easy to decrease for the agglomeration of TiB₂ particles [23]. When CeO_2 additive is added, CeO_2 is reduced to Ce by aluminum. Rare earth Ce is a kind of surface active element, which can reduce the surface tension of Al alloy melt and be adsorbed easily at phase boundary [24,25]. Therefore, in the TiB₂/2014 composite with CeO₂, the surface tension of 2014 Al alloy melt is reduced, which increases the wettability and surfacespread coefficient of TiB₂ particles in alloy melt. Ce is adsorbed at phase boundaries between TiB₂ particles and matrix alloy, which not only fills the interface defects but also decreases the interfacial energy. Finally, TiB2 particles disperse uniformly in the 2014 Al alloy melt. During the solidification, the single TiB_2 particle with smaller moving velocity in 2014 Al alloy melt [22] can be captured by matrix grain, which makes the TiB₂ particles distribute dispersedly almost in the whole 2014 Al matrix alloy except a slight segregation is observed. Figure 3 shows the result of element area scanning of the $TiB_2/2014$ composite with CeO₂. As shown in Fig. 3, Ce mainly distributes at phase boundaries between TiB₂ particles and 2014 Al alloy matrix, and agglomerative TiB₂ particles are dispersed gradually, which is consistent with the above analysis.

Figure 4 shows the crystal morphology and SAED pattern of TiB_2 particles in the 5% $TiB_2/2014$ + 0.5% CeO₂ composite. It can be seen that the CeO₂ additive

does not affect the formation of TiB_2 particles, and Ce element is only absorbed at the interfaces between TiB_2 particles and Al matrix and does not combine with TiB_2 particles to form a new phase.

3.3 Settlement of TiB₂ particles in composite with CeO₂

Figure 5 shows the SEM microstructures of the top and bottom of the composite melt with CeO_2 . The TiB₂ particles have good dispersion in 2014 Al alloy whether on the top or bottom of the sample, and most of TiB₂ particles can break away from the agglomerations at grain boundary and disperse gradually to inner grain. However, it can be observed that the number of TiB₂ particles in the bottom sample seems to be more than that in the top sample. Table 2 lists the chemical compositions of top and bottom samples. The result shows that the contents of Ti and B in the top sample are slightly lower than those in the bottom sample, which indicates that TiB₂ particles have slightly settled in the preparation of the composite. But the number of sedimental TiB₂ particles accounts only for 2.1% of the total particles, which can be ignored in the preparation of in-situ TiB₂ particles reinforced metal matrix composite. So, the $TiB_2/2014$ composite with good particle dispersion is prepared successfully when CeO₂ additive is added.

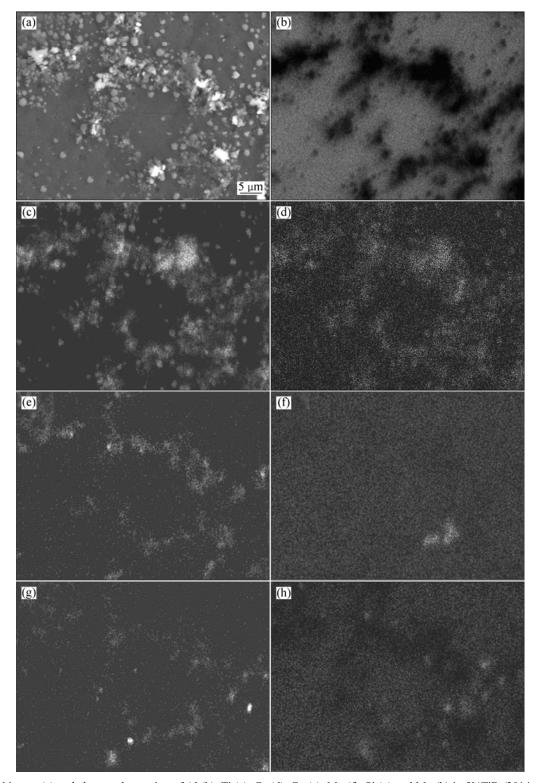


Fig. 3 SEM image (a) and elemental mapping of Al (b), Ti (c), Ce (d), Cu (e), Mn (f), Si (g) and Mg (h) in 5%TiB₂/2014+0.5% CeO₂ composite

Table 2 Chemical composition of 5%TiB2/2014+0.5%CeO2composite at different parts (mass fraction, %)

Location	Cu	Si	Mn	Mg	Ti	В	Ce	Fe	Al
Тор	4.87	0.75	0.91	0.79	5.23	2.48	0.41	0.12	Bal.
Bottom	4.82	0.77	0.91	0.76	5.45	2.62	0.4	0.13	Bal.

3.4 Mechanical properties

The mechanical properties in as-cast condition, such as hardness, tensile strength, yield strength and elongation of both the alloy and composites are compiled in Table 3. The values of hardness (HV_{50}), tensile strength and yield strength of 5%TiB₂/2014 composite

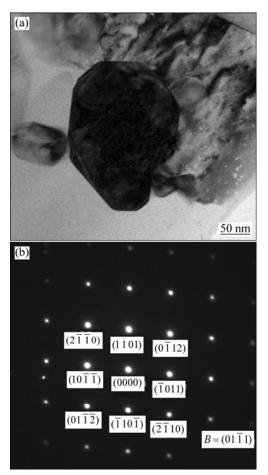
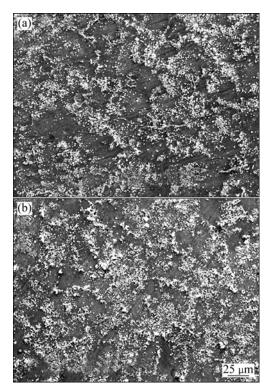



Fig. 4 Crystal morphology (a) and SAED pattern (b) of TiB_2 particles in 5% $TiB_2/2014+0.5\%$ CeO₂ composite

Fig. 5 SEM microstructures of 5%TiB₂/2014+0.5%CeO₂ composite at different parts: (a) Top; (b) Bottom

without CeO₂ are 52.1%, 20.3% and 21.4% higher than those of the 2014 Al matrix alloy, and the elongation is not decreased. When CeO_2 is added, the hardness, tensile strength, yield strength and elongation of the composite are 62.0%, 31.1%, 31.0% and 38.9% higher than those of the 2014 Al matrix alloy. The strengthening reasons of 2014 Al alloy matrix composite are due to some factors, such as the size, morphology and dispersion of TiB₂ reinforcement particles, the matrix grain refinement and the interfacial bonding between TiB2 reinforcement particles and matrix. When TiB₂ particles are introduced into a molten 2014 Al alloy by in-site synthesis, the differences in the thermal expansion coefficient between TiB₂ particles and Al alloy matrix will make the dislocation density within the composite increase. Al alloy matrix grain can be refined due to the accumulation of particles in the liquid between the growing dendrites, which seems to inhibit continued dendritic growth. However, when CeO_2 is added, the dispersion of TiB_2 particles is improved obviously, which is equal to increasing the amount of TiB₂ particles and reducing the stress concentration arising from the TiB₂ particle agglomerations. In addition, the special behaviors of Ce in Al alloy such as refinement, purification and degassing also can improve the mechanical properties [25], especially elongation.

Composite	Hardness (HV ₅₀)	Tensile strength/ MPa	Yield strength/ MPa	Elongation/%
2014 alloy	71	212	126	3.6
5%TiB ₂ /2014	108	255	153	3.8
5%TiB ₂ /2014 +0.5%CeO ₂	115	278	165	5.0

4 Conclusions

In-situ TiB₂ particles reinforced 2014 Al alloy composite is successfully prepared. When CeO₂ additive is added, the dispersion of TiB₂ particles in the matrix is improved greatly, and particles have no obvious settlement. The hardness, tensile strength and yield strength of 5%TiB₂/2014 without CeO₂ composite are 52.1%, 20.3% and 21.4% higher than those of the 2014 Al alloy and the elongation is not decreased. When CeO₂ is added, the hardness, tensile strength, yield strength and elongation of 5%TiB₂/2014 composite are 62.0%, 31.1%, 31.0% and 38.9% higher than those of the Al 2014 alloy.

References

 WALKER J C, RAINFORTH W M, JONE H. Lubricated sliding wear behavior of aluminum alloy composites [J]. Wear, 2005, 259: 577-589.

- [2] KOK M. Production and mechanical properties of Al₂O₃ particle-reinforced 2024 aluminum alloy composites [J]. Journal of Materials Processing Technology, 2005, 161: 381–387.
- [3] DAVIES P, KELLIE J L F, WOOD J V. Development of cast aluminum MMC'S [J]. Key Engineering Materials, 1993, 77–78: 357–362.
- [4] ONAT A, AKBULUT H, YILMAZ F. Production and characterization of silicon carbide particulate reinforced aluminum-copper alloy matrix composites by direct squeeze casting method [J]. Journal of Alloys and Compounds, 2007, 436: 375–382.
- [5] SADEGHIAN Z, LOTFI B, ENAYATI M H, BEISS P. Microstructural and mechanical evaluation of Al–TiB₂ nanostructured composite fabricated by mechanical alloying [J]. Journal of Alloys and Compounds, 2011, 509: 7758–7763.
- [6] ANANDKUMAR R, ALMEIDA A, VILAR R. Wear behavior of Al-12Si/TiB₂ coatings produced by laser cladding [J]. Surface and Coating Technology, 2011, 205: 3824–3832.
- [7] ZHANG Yi-jie, MA Nai-heng, WANG Hao-wei. Effect of Ti and Mg on the damping behavior of in situ aluminum composites [J]. Materials Letters, 2005, 59: 3775–3778.
- [8] KUMAR S, SUBRAMANYA SARMA V, MURTY B S. The influence of room temperature and cryogenic temperature rolling on the aging and wear behavior of Al-4Cu-5TiB₂ in situ composites [J]. Journal of Alloys and Compounds, 2009, 479: 268–273.
- [9] ZHAO D G, LIU X F, PAN Y C. Microstructure and mechanical properties of in situ synthesized (TiB₂+Al₂O₃)/Al-Cu composites [J]. Journal of Materials Processing Technology, 2007, 189: 237–241.
- [10] MANDAL A, CHAKRABORTY M, MURTY B S. Effect of TiB₂ particles on sliding wear behavior of Al–Cu alloy [J]. Wear, 2007, 263: 160–166.
- [11] HERBERT MERVIN A, MAITI R, MITRA R. Wear behaviour of cast and mushy state rolled Al-4.5Cu alloy and in-situ Al4.5Cu-5TiB₂ composite [J]. Wear, 2008, 265: 1606–1618.
- [12] WOOD J V, DAVIES P, KELLIE J L F. Properties of reactively cast aluminium–TiB₂ alloys [J]. Materials Science and Technology, 1993, 9: 833–840.
- [13] LAKSHMI S, LU L, GUPTA M. In situ preparation of TiB₂ reinforced Al based composites [J]. Journal of Materials Processing

Technology, 1998, 73: 160-166.

- [14] HAN Yan-feng, LI Ke, WANG Jun. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminum [J]. Materials Science and Engineering A, 2005, 405: 306-312.
- [15] MOHANTY P S, GRUZLESKI J E. Mechanism of grain refinement in aluminum [J]. Acta Metall Mater, 1995, 43: 2001–2012.
- [16] RAVI K R, SARAVANAN M, PILLAI R M. Equal channel angular pressing of Al-5wt% TiB₂ in situ composite [J]. Journal of Alloys and Compounds, 2008; 459: 239–243.
- [17] FJELLSTEDT J, JARFORD A E W. On the precipitation of TiB_2 in aluminum melts from the reaction with KBF_4 and K_2TiF_6 [J]. Materials Science and Engineering A, 2005, 413–414: 527–532.
- [18] TSZENG T C. The effects of particle clustering on the mechanical behavior of particle reinforced composites [J]. Composites Part B, 1998, 29: 299–308.
- [19] JHA A, DOMETAKIS C. The dispersion mechanism of TiB₂ ceramic phase in molten aluminum and its alloys [J]. Materials and Designs, 1997, 18: 297–301.
- [20] YOUSSEF Y M, DASHWOOD R J, LEE P D. Effect of clustering on particle pushing and solidification behaviour in TiB₂ reinforced aluminum PMMCs [J]. Composites Part A, 2005, 36: 747–763.
- [21] TAN M J, ZHANG X. Powder metal matrix composites: Selection and processing [J]. Materials Science and Engineering A, 1998, 244: 80–85.
- [22] XUN Jing, WANG Jun, HAN Yan-feng. Effect of CeO₂ additive on the microstructure and mechanical properties of in situ TiB₂/Al composite [J]. Journal of Alloys and Compounds, 2011, 509: 1573–1578.
- [23] FENG C F, FROYEN L. Microstructures of in situ Al–TiB₂ MMCs prepared by a casting route [J]. Journal of Materials Science, 2000, 35: 837–850.
- [24] LUO Tian-jiao, YAO Guang-chun. Behavior of CeO₂ addition in nickel-plated carbon fiber reinforced aluminum alloy matrix composites [J]. The Chinese Journal of Nonferrous Metals, 2007, 17(1): 80–84. (in Chinese)
- [25] LIU You-ming, XU Bo-fan, LI Wen-yi. The effect of rare earth CeO₂ on microstructure and properties of in situ TiC/Al-Si composite [J]. Materials Letters, 2004, 58: 432–436.

CeO₂添加剂在原位 TiB₂颗粒增强 2014 铝合金 复合材料中的作用

薛 菁,王 俊,韩延峰,陈 冲,孙宝德

上海交通大学 金属基复合材料国家重点实验室, 上海 200240

摘 要:将K₂TiF₆和 KBF₄ 混合盐与铝合金熔体通过放热反应法制备原位 TiB₂颗粒增强 2014 铝合金基复合材料。 研究 CeO₂添加剂对原位 TiB₂/2014 铝基复合材料显微组织和力学性能的影响。结果表明,在高温时添加 CeO₂与 添加 Ce 的作用相同;当添加 0.5% CeO₂时,TiB₂颗粒在基体中的分散性大幅度提高,颗粒与基体的界面清晰, 在复合材料制备过程中颗粒没有明显的沉降现象。解释了 TiB₂颗粒在 2014 铝合金基体中的分散机理。加入 CeO₂ 的复合材料,其铸态硬度、抗拉强度、屈服强度和伸长率有较大提高。 关键词: 2014 铝合金; TiB₂;复合材料; CeO₂