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Impact of anisotropic growth on kinetics of solid-state phase transformation
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Abstract: Based on the statistical analysis of blocking effect arising from anisotropic growth, the anisotropic effect on the kinetics of
solid-state transformation was investigated. The result shows that the blocking effect leads to the retardation of transformation and
then a regular behavior of varying Avrami exponent. Following previous analytical model, the formulations of Avrami exponent and
effective activation energy accounting for blocking effect were obtained. The anisotropic effect on the transformation depends on two
factors, non-blocking factor y and blocking scale &, which directly acts on the dimensionality of growth. The effective activation
energy is not affected by the anisotropic effect. The evolution of anisotropic effect with the fraction transformed is taken into account,

showing that the anisotropic effect is more severe at the middle stage of transformation.
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1 Introduction

Transformation kinetics involving nucleation and
growth of anisotropic particles is a topic of practical
importance due to its relevance to a variety of
applications which require anisotropic material by their
very nature [1]. However, the classical treatments of
transformation kinetics by JOHNSON, MEHL, AVRAMI,
KOLMOGOROV (JMAK) [2—4] are usually derived for
isotropic particles or for aligned anisotropic particles
(where no odd blocking effect is found). The calculation
of the kinetics of transformation involving anisotropic
particles is a much more challenging problem than that
for isotropic particles, due to the blocking effect arising
from anisotropic growth. SHEPILOV [5] gave one
treatment of the blocking effect in one-dimension (1D),
which did not employ the mean-field approach usually
used for IMAK analyses. Subsequently, SHEPILOV III
and BAIK [6] discussed the blocking in a broader
context, though only limited numerical results were
given. On the basis of the statistic derivation of IMAK
theory, BIRINE and WEINBERG [7-9] formulated the
growth of anisotropic particle (especially elliptically
shaped particle) and the overall kinetics of

transformation predominantly for 1D; only pre-existing
nuclei were assumed in 2D and the possibility that
particles grew around each other was excluded. With
Monte Carlo method, PUSZTAI and GRANASY [10]
and KOOI [11,12] studied the mutual blocking of
anisotropically growing particles up to all relevant orders,
and KOOI [11,12] proposed an analytical model to
describe the blocking effect. On the basis of KOOI’s
model, the deviations from JMAK-like kinetics due to
the anisotropic effect were investigated further by LIU
and YANG [13]. There is another option to extend the
mathematical formulation of the JMAK theory, adding
(one or more) new variables that provide freedom to
improve the agreement in case that anisotropic growth
occurs [14,15].

Following the JMAK statistical consideration, a
stochastic treatment accounting for the blocking effect
arising from anisotropic growth was proposed, and
analytical models for solid-state transformation where a
particle undergoes 1-scale blocking, k-scale blocking and
infinite-scale blocking were developed [16]. On this
basis, the present study is aimed at discussing the effect
of anisotropic growth on the solid-state transformation
via nucleation and growth. As known, anisotropic effect
leads to the retardation of transformation, which can be
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evaluated from the varying Avrami exponent. New
expressions for Avrami exponent n,., and effective
activation energy Q.. subjected to the anisotropic effect
were obtained, the evolution of anisotropic effect during
the transformation was taken into account.

2 Theoretical background

In the IMAK description, the nucleation and growth
are modeled as two statistical processes. The original
derivation of JMAK equation rests on calculating the
probability that a randomly chosen point in space (e.g.
the origin point O) remains untransformed in a given
time z. The probability that a particle nucleated at time 7
grows to the origin point O at time ¢ is expressed as [3]:

dx, = N(0)Y(z,t)dz (1)

where dx, is the differential form of the extended fraction
X, N is the steady-state nucleation rate per unit
volume; N(r)dr is the probability for a particle
nucleated in the time interval [z, t+dz] per unit volume;
Y(z, t) is the volume of a particle at time ¢ when it is
nucleated at time 7. Accordingly, ¢(?), the probability of
the random point O untransformed at time ¢ is obtained
as [3,6]:

9(t) = expl-[ | N(0)¥(z,0)d7] @

Thus, the JMAK equation describing the temporal
evolution of transformed fraction is expressed as:

1) =1-expl-x,(1)] 3)

and the extended fraction x, is described as:
t .
X, = jON(r)Y(r,t)dr 4)

Recently, a modular model for transformation
kinetics [15,17] has been proposed that includes, but is
not restricted to, the classical JMAK description. This
modular model expands the JIMAK theory with time- or
temperature-dependent kinetic parameters, and the model
recognizes three mechanisms, nucleation, growth and
impingement of growing new-phase particles, and it is
applicable to both isothermal and non-isothermal
transformations. A detailed description for the modes of
nucleation, growth and impingement was reported in
Ref. [15].

Regarding to Ref. [15], the extended fraction x. for
different combinations of nucleation and growth
mechanisms can be expressed in the following general
analytical form as:

n n nQ
x,. =Kya" exp| ——— 5
e 0 p( RTJ ( )

where a is identified with either the annealing time ¢ for
isothermal transformation or RT*/@® for isochronal
(heating) transformation with constant heating rate @. In
general, the kinetic parameters n (growth exponent), Q
(effective activation energy) and K, (rate constant) are
functions of time ¢ (isothermal transformation) or
temperature 7 (isochronal transformation) and depend on
the corresponding model parameters of nucleation and
growth modes. Explicit expressions for n, Q and K in
terms of general nucleation and growth modes for
isothermal and isochronal annealing (heating) are given
in Ref. [15].

In this modular model, the effect of anisotropic
growth is also considered an impingement mode [15,17].
One phenomenological approach accounting for
impingement in this case can be given as:

fo1-[le@-Dx] 2 ©)

where & 2>1. Equation (6) merely modifies the
relationship between the transformed fraction f and
extended fraction x., applying the phenomenological

factor £ for impingement.

3  Transformation  Kkinetics involving
anisotropic effect

3.1 Model description
For randomly oriented anisotropic particles

neglecting the blocking effect, the JMAK theory still
holds and the transform fraction depends only on the
particle volume but not the particle orientation [18].
However, mutual interference of anisotropic particles is
certainly inevitable [6—10]. Accordingly, the anisotropic
growth just becomes the problem of the blocking effect
(anisotropic effect).

As illustrated schematically in Fig. 1, the dashed
circle indicates that an anisotropically growing particle
(aggressor A) is equivalently considered an isotropic
particle with invariable volume, the aggressor would
encounter the successive interferences of other particles
(blockers). Assume that aggressor A nucleates at /=t and
grows towards the origin at a rate dY. As the
transformation proceeds, the aggressor is progressively
interfered by the first blocker (=t,), the second blocker
(+=t,) and the Nth blocker until it arrives at the origin at
time =t (t<t;<ty***<f). Accordingly, the aggressor grows
at a rate of ydY after r=¢,, y2dY after =t,, and finally, y"dY
after r=ty. Physically, dY and y are defined as the
averaged volume increment and the non-blocking factor
(i.e. the unblocked part of the averaged volume
increment), for a single particle, respectively.
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Fig. 1 Schematic diagram depicting statistical treatment of

blocking effect arising from anisotropic grow

Considering anisotropic effect, only unblocked
particles can grow to the origin. Therefore, a time-
dependent function S(f) to represent the non-blocking
probability of aggressors is introduced [9]. Thus, an
aggressor encountering interferences of
blockers can still transform the origin probability as
[8,16]

dx, = S(t)dx, (7)

where S(f) represents all the orientation-, time- and
position-averaged value of the non-blocking probability
factors.

Denote the probability function for a particle to
encounter only N-scale blocking as py(f). Particularly,
po(?) indicates the probability of the particle unblocked.
And then the probability that the aggressor after
undergoing the N-scale blocking without any
higher-scale blocking transforms the origin at time ¢ can
be expressed as:

dxgy = po(t)dx, + py () pdx, + py 1)y dx, +
o+ py )y Vdx, ®)

It should be mentioned that Eq. (8) represents the
statistical ~contributions of different degrees of
anisotropic effect to dx.,. This strongly implies that the
anisotropic effect on the transformation depends on not
only 7, but also N; the coexistence of multiple blocking
prevails. Comparing Egs. (8) and (7), one can obtain a
time-dependent, averaged and non-blocking probability
function S(7),

successive

N
S =270 ©)
i=0
Regarding to Ref. [16], the probability function for
each particle undergoing the Nth blocking until the origin
is transformed at ¢, namely, p\(?), is concluded to obey
Poisson distribution as:

oy =[50 | el [ sa] a0

3.2 Formal expression for fraction transformed
3.2.1 One-scale blocking

If an aggressor encounters only one-scale blocking
without any higher-scale blocking (see Fig. 1), the
probability of the aggressor unblocked py(f) and the
probability of the aggressor once blocked p;(t) occur and
follow

Po)+pi (1) =1 an

po(?) can be given in Eq. (10) and p(¢) can be
given as 1—py(#). According to Eq. (9), the function of
non-blocking probability S(x.) can be obtained as:

S(x,) = exp[— [ S(xé)dxé} +

o] - [ s | (12)

Equation (12) is a differential equation for x., and x,
with  S(xe)=dx.,/dx. and x,, = I:e S(x))dx., and the

analytical solution follows

Xy = ln7—1+f;xp(m) (13)

Meanwhile, S(x.) can be obtained as:

7 exp(jx.)

S(x.) = —t )
) = exp(m)

(14)

The transformed fraction f accounting for the
one-scale blocking arising from the anisotropic growth
can be expressed as:

4

f=1-exp(—xg) =1-————
¥ —1+exp(yx,)

(15)

3.2.2 k-scale blocking

Analogously, if an aggressor encounters the k-scale
blocking without any higher-scale blocking, then k+1
events, namely, the probability of the particle unblocked
po(t) and the probabilities of the particle blocked once
pi(1), twice p,(?),** and k-scale p,(¢) occur and follow

k
2 pin=1 (16)
i=0

The probability of the aggressor encountering the
previous (k—1) scales blocking satisfies Eq. (10), and the
k=1
pi(t) can be given as I—Z p;(t) . Applying S(x.)=
i=0
dx.,/dx., Eq. (9) can be rewritten as:
dx, n = 1 i i
=7 2 ) P )7 =7 (17

€ i=0 "

Since Eq. (17) is a non-linear ordinary differential
equation, the exact analytical solution to this equation is
not feasible. Nevertheless, numerical calculations show
that the transformed fraction can be still obtained
through f=1—exp[—x.,(¢)] [16].
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3.2.3 Infinite-scale blocking
According to Eq. (10), an aggressor encountering
infinite-scale blocking, py(?), satisfies

> pnle)=1 (18)
0

Inserting Eq. (10) into Eq. (9) with N approaching
infinity yields

N

S 0)= Y0 o0 = Y 7 SO (o) |
N=0

~N
expf - [ Sx. )k (7)) (19)
Eq. (19) can be rewritten as:
S5 0) =exp{- [ (1= ST (Ol o)} (20)

Applying dx.,=S(x.(f))dx., the differential equation
Eq. (20) can be solved as:

X = —— 1+ (1= p)x, ] 1)
I-y
and
S(x, )—; (22)
1+ (-p)x,

At last, the transformed fraction f can be expressed
as:

e (23)

Note that Eq. (23) is completely the same as the
phenomenological Eq. (6) with &&2—y (0<y<l), which
shows that the phenomenological treatment (see Eq. (6))
corresponds just to the extreme case where the particle
encounters the infinite-scale blocking.

3.3 Avrami exponent and effective activation energy

Avrami exponent is commonly used as a tracer of
the mechanisms underlying the transformation. However,
anisotropic growth of neighboring particles leads to
blocking and then the
transformation. Therefore, the anisotropic effect can be
evaluated from the varying Avrami exponent.

Generally, for isothermal transformation, the
Avrami exponent is often evaluated by plotting

mutual retardation of

In(—In(1-f)) versus In ¢, whereas the effective activation
energy is evaluated by plotting In ¢ versus 1/T [15,17].
Applying f=1—exp[—xey(xc)], in combination with Eq. (7),

a new expression for Avrami exponent subjected to
anisotropic effect, 7., is deduced as:
_dIn[-In(1- /)] dInx,, dlnx, x,

n = = =
e dInt dlnx, dint

S(x,)n
en
24

where n corresponds to the analytical expression
obtained from the modular model for transformation
assuming different nucleation and isotropic growth
modes (see Ref. [15]).

Analogously, a new expression for -effective
activation energy of transformation subjected to
anisotropic effect can be obtained as:

dint_, _ din[-In(l—N)}/dQ/T) , _
d7)"  din[-In(-f)]/dlns

It should be noted that, in Eq. (25), Q is according
to the modular model expressed as (d/mQgt(n—
d/m)Qy)/n [15,17]. Then the relationship between Qe
and n,., can be deduced as:

Onew = 0 (29

d x
Qnewzi 8

S(xe)QG + |:” _%Xis(xe ):|QN/11’16W

en en

(20)
where d is the growth dimensionality; m is the growth
mode parameter (m=1 for interface-controlled growth
and m=2 for volume diffusion-controlled growth); Qg is
the growth activation energy and Qy is the nucleation
activation energy. Equation (26) clearly shows that the
anisotropic effect directly acts on the dimensionality of
growth. This makes sense since the particle morphology
changes after encountering interference. However, Qg
and Qy hold unaffected, and then the overall effective
activation energy is not affected by the anisotropic effect.

4 Evolution of anisotropic effect with
transformation

On the basis of JMAK theory, if all the particles
anisotropically grow in an infinite matrix without the
influence of other particles, each exhibits the same rate
distribution and shape but different orientations.
However, the impingement of anisotropic particles
certainly exists, which must change the rate distribution,
the shape and even the particle orientation. From the
statistic viewpoint, with transformation proceeding, the
evolution of anisotropic effect is bound to happen.

From Section 3.3, it is necessary to introduce a
parameter, u, which can reflect the evolution of
anisotropic effect as:

p==es @7)

xen
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According to Section 3.1, when t—0, x.,—x. and
S—1, then u—1; when t—o0, x,—x.S, then u also
approaches 1. It means that isotropic growth has
dominance at the initial stage and last stage of the
transformation. words, at the end of
transformation, all particles have a tendency to grow
isotropically because the rate distributions again tend to

In other

the same and/or particles orientations tend to parallel
after adequate impingement. However, at the middle
stage, the dominance of isotropic growth is undermined,
owing to a severe blocking effect arising from
anisotropic growth. The conclusion was also found by
SHEPILOV and BAIK [6] and BIRNIE III and
WEINBERG 1II [7], but they did not provide a valid
interpretation.

An example is taken to expound the analysis.
Assuming mixed nucleation and three-dimensional (3D)
interface-controlled growth with model parameters as
Ne=5%108 m> st N=1x10"" m>, v=1x10° m/s,
0»=100 kJ/mol and Q=200 kJ/mol (as described in Ref.
[15], Ny is the temperature-independent nucleation rate;
N is the number of pre-existing nuclei per unit volume;
vy is the pre-exponential factor for growth; Oy is the
nucleation activation energy and Qg is the growth
activation energy), for isothermal transformation at
7=680 K, the evolution of n,, with f is obtained,
subjected to the same-scale blocking but different y (e.g.
only 1-scale blocking occurring but y=0.2, 0.4, 0.6, 0.8,
see Fig. 2(a)), and subjected to different- scale blocking
but the same y (e.g. y=0.4 and k-scale blocking with £=0,
I, 2, 3, see Fig. 2(b)). It is shown clearly that the
transformation accounting for the blocking effect arising
from anisotropic growth depends on not only y but also 4.

From Eq. (27), xe/xe, and S act as the two key
factors to evaluate the anisotropic effect. Applying the
same model parameters as that used for Fig. 2, the
evolution of x./x.,, S and u with f, as well as the
evolution of 7., and n with £, subjected to y=0.4 and
I-scale blocking, is calculated and shown in Fig. 3.
Clearly, x./x., increases monotonously with f, but S
declines with f. Consequently, x declines first, reaches a
minimum value, and then increases. This implies that
three basic regimes of transformation could be identified.
At the initial stage of transformation, x./x., and S both
approach to unity, then u—1; the equivalent isotropic
particles each grow independently without the blocking
effect. At the middle stage of transformation, severe
blocking effect occurs; u does have a minimum value at
some time. At the final stage of transformation, however,
the blocking effect is alleviated, so that u tends to the
value where the blocking has not occurred, i.e. u—1 as
seen in Fig. 3.

(a)
A
£351 P Ly ol Bt bt S L ot
:= ‘‘‘‘‘‘
g
2 3.0
=
j=5
S 0.8
— - y=0.
g 25 e 3 =06
= —--y=04
) 1-scale blocking, 7=680 K
15 1 L 1 1
0 0.2 0.4 0.6 0.8 1.0
Transformed fraction, f
4.0
(b)
_________________ —
535 —""T7
=:=
S30F 0 e )
= [ Tt T -
j=5
g blocki
o == No blocking
E 23 - ]-scale blocking
s --- 2-scale blocking
< 20k — 3-scale blocking
' y=0.4, T=680 K
15 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0

Transformed fraction, f

Fig. 2 Evolution of n,, with f for transformation assuming
mixed nucleation and 3D interface controlled growth: (a)
Same-scale blocking but different p; (b) Different-scale
blocking but same y

0 0.2 0.4 0.6 0.8 1.0
Transformed fraction, f

Fig. 3 Evolution of x./x.,, S and u with £, as well as evolution of
n and nu., with f, for transformation subjected to 1-scale
blocking and y=0.4 (Values of model parameters are same as
those in Fig. 2)

5 Conclusions

1) The effect of anisotropic growth on the kinetics
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of solid-state transformation is described. Anisotropic
effect on the transformation depends on not only the
non-blocking factor y but also the blocking scale .

2) Blocking effect arising from anisotropic growth
leads to a reduction of Avrami exponent, but the
unblocked value in the end; whereas effective activation
energy is not affected by the anisotropic effect.

3) Anisotropic effect directly acts on the
dimensionality of growth.

4) Evolution of anisotropic effect with the fraction
transformed is taken into account, which can be reflected
by the behavior of u, and the anisotropic effect is more
severe at the middle stage of transformation and is
alleviated at both initial and last stage.
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