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Abstract: Based on the statistical analysis of blocking effect arising from anisotropic growth, the anisotropic effect on the kinetics of 
solid-state transformation was investigated. The result shows that the blocking effect leads to the retardation of transformation and 
then a regular behavior of varying Avrami exponent. Following previous analytical model, the formulations of Avrami exponent and 
effective activation energy accounting for blocking effect were obtained. The anisotropic effect on the transformation depends on two 
factors, non-blocking factor γ and blocking scale k, which directly acts on the dimensionality of growth. The effective activation 
energy is not affected by the anisotropic effect. The evolution of anisotropic effect with the fraction transformed is taken into account, 
showing that the anisotropic effect is more severe at the middle stage of transformation. 
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1 Introduction 
 

Transformation kinetics involving nucleation and 
growth of anisotropic particles is a topic of practical 
importance due to its relevance to a variety of 
applications which require anisotropic material by their 
very nature [1]. However, the classical treatments of 
transformation kinetics by JOHNSON, MEHL, AVRAMI, 
KOLMOGOROV (JMAK) [2−4] are usually derived for 
isotropic particles or for aligned anisotropic particles 
(where no odd blocking effect is found). The calculation 
of the kinetics of transformation involving anisotropic 
particles is a much more challenging problem than that 
for isotropic particles, due to the blocking effect arising 
from anisotropic growth. SHEPILOV [5] gave one 
treatment of the blocking effect in one-dimension (1D), 
which did not employ the mean-field approach usually 
used for JMAK analyses. Subsequently, SHEPILOV III 
and BAIK [6] discussed the blocking in a broader 
context, though only limited numerical results were 
given. On the basis of the statistic derivation of JMAK 
theory, BIRINE and WEINBERG [7−9] formulated the 
growth of anisotropic particle (especially elliptically 
shaped particle) and the overall kinetics of 

transformation predominantly for 1D; only pre-existing 
nuclei were assumed in 2D and the possibility that 
particles grew around each other was excluded. With 
Monte Carlo method, PUSZTAI and GRÁNÁSY [10] 
and KOOI [11,12] studied the mutual blocking of 
anisotropically growing particles up to all relevant orders, 
and KOOI [11,12] proposed an analytical model to 
describe the blocking effect. On the basis of KOOI’s 
model, the deviations from JMAK-like kinetics due to 
the anisotropic effect were investigated further by LIU 
and YANG [13]. There is another option to extend the 
mathematical formulation of the JMAK theory, adding 
(one or more) new variables that provide freedom to 
improve the agreement in case that anisotropic growth 
occurs [14,15]. 

Following the JMAK statistical consideration, a 
stochastic treatment accounting for the blocking effect 
arising from anisotropic growth was proposed, and 
analytical models for solid-state transformation where a 
particle undergoes 1-scale blocking, k-scale blocking and 
infinite-scale blocking were developed [16]. On this 
basis, the present study is aimed at discussing the effect 
of anisotropic growth on the solid-state transformation 
via nucleation and growth. As known, anisotropic effect 
leads to the retardation of transformation, which can be 
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evaluated from the varying Avrami exponent. New 
expressions for Avrami exponent nnew and effective 
activation energy Qnew subjected to the anisotropic effect 
were obtained, the evolution of anisotropic effect during 
the transformation was taken into account. 

 
2 Theoretical background 

In the JMAK description, the nucleation and growth 
are modeled as two statistical processes. The original 
derivation of JMAK equation rests on calculating the 
probability that a randomly chosen point in space (e.g. 
the origin point O) remains untransformed in a given 
time t. The probability that a particle nucleated at time τ 
grows to the origin point O at time t is expressed as [3]: 
 

τττ d),()(d e tYNx &=                            (1) 
 
where dxe is the differential form of the extended fraction 
xe; N&  is the steady-state nucleation rate per unit 
volume; ττ d)(N&  is the probability for a particle 
nucleated in the time interval [τ, τ+dτ] per unit volume; 
Y(τ, t) is the volume of a particle at time t when it is 
nucleated at time τ. Accordingly, q(t), the probability of 
the random point O untransformed at time t is obtained 
as [3,6]: 
 

]d),()(exp[)(
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Thus, the JMAK equation describing the temporal 
evolution of transformed fraction is expressed as: 
 

[ ])(exp1)( e txtf −−=                          (3) 
 
and the extended fraction xe is described as: 
 

∫=
t

tYNx
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Recently, a modular model for transformation 
kinetics [15,17] has been proposed that includes, but is 
not restricted to, the classical JMAK description. This 
modular model expands the JMAK theory with time- or 
temperature-dependent kinetic parameters, and the model 
recognizes three mechanisms, nucleation, growth and 
impingement of growing new-phase particles, and it is 
applicable to both isothermal and non-isothermal 
transformations. A detailed description for the modes of 
nucleation, growth and impingement was reported in  
Ref. [15]. 

Regarding to Ref. [15], the extended fraction xe for 
different combinations of nucleation and growth 
mechanisms can be expressed in the following general 
analytical form as: 
 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
nQKx nn exp0e α                         (5) 

where α is identified with either the annealing time t for 
isothermal transformation or RT2/Φ for isochronal 
(heating) transformation with constant heating rate Φ. In 
general, the kinetic parameters n (growth exponent), Q 
(effective activation energy) and K0 (rate constant) are 
functions of time t (isothermal transformation) or 
temperature T (isochronal transformation) and depend on 
the corresponding model parameters of nucleation and 
growth modes. Explicit expressions for n, Q and K0 in 
terms of general nucleation and growth modes for 
isothermal and isochronal annealing (heating) are given 
in Ref. [15]. 

In this modular model, the effect of anisotropic 
growth is also considered an impingement mode [15,17]. 
One phenomenological approach accounting for 
impingement in this case can be given as: 
 

[ ] 1
1

e)1(11 −
−−+−= ξξ xf                        (6) 

 
where ξ ≥1. Equation (6) merely modifies the 
relationship between the transformed fraction f and 
extended fraction xe, applying the phenomenological 
factor ξ for impingement. 
 
3 Transformation kinetics involving 

anisotropic effect 
 
3.1 Model description 

For randomly oriented anisotropic particles 
neglecting the blocking effect, the JMAK theory still 
holds and the transform fraction depends only on the 
particle volume but not the particle orientation [18]. 
However, mutual interference of anisotropic particles is 
certainly inevitable [6−10]. Accordingly, the anisotropic 
growth just becomes the problem of the blocking effect 
(anisotropic effect). 

As illustrated schematically in Fig. 1, the dashed 
circle indicates that an anisotropically growing particle 
(aggressor A) is equivalently considered an isotropic 
particle with invariable volume, the aggressor would 
encounter the successive interferences of other particles 
(blockers). Assume that aggressor A nucleates at t=τ and 
grows towards the origin at a rate dY. As the 
transformation proceeds, the aggressor is progressively 
interfered by the first blocker (t=t1), the second blocker 
(t=t2) and the Nth blocker until it arrives at the origin at 
time t=t (τ<t1<t2…<t). Accordingly, the aggressor grows 
at a rate of γdY after t=t1, γ2dY after t=t2, and finally, γNdY 
after t=tN. Physically, dY and γ are defined as the 
averaged volume increment and the non-blocking factor 
(i.e. the unblocked part of the averaged volume 
increment), for a single particle, respectively. 
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Fig. 1 Schematic diagram depicting statistical treatment of 

blocking effect arising from anisotropic grow 
 

Considering anisotropic effect, only unblocked 
particles can grow to the origin. Therefore, a time- 
dependent function S(t) to represent the non-blocking 
probability of aggressors is introduced [9]. Thus, an 
aggressor encountering successive interferences of 
blockers can still transform the origin probability as 
[8,16]  

( ) een dd xtSx =                                (7) 
 
where S(t) represents all the orientation-, time- and 
position-averaged value of the non-blocking probability 
factors. 

Denote the probability function for a particle to 
encounter only N-scale blocking as pN(t). Particularly, 
p0(t) indicates the probability of the particle unblocked. 
And then the probability that the aggressor after 
undergoing the N-scale blocking without any 
higher-scale blocking transforms the origin at time t can 
be expressed as:  

+++= e
2

2e1e0en d)(d)(d)(d xtpxtpxtpx γγ  

ed)( xtp N
N γ+L                         (8) 

 
It should be mentioned that Eq. (8) represents the 

statistical contributions of different degrees of 
anisotropic effect to dxen. This strongly implies that the 
anisotropic effect on the transformation depends on not 
only γ, but also N; the coexistence of multiple blocking 
prevails. Comparing Eqs. (8) and (7), one can obtain a 
time-dependent, averaged and non-blocking probability 
function S(t),  
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0

tptS i
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Regarding to Ref. [16], the probability function for 
each particle undergoing the Nth blocking until the origin 
is transformed at t, namely, pN(t), is concluded to obey 
Poisson distribution as:  
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3.2 Formal expression for fraction transformed 
3.2.1 One-scale blocking 

If an aggressor encounters only one-scale blocking 
without any higher-scale blocking (see Fig. 1), the 
probability of the aggressor unblocked p0(t) and the 
probability of the aggressor once blocked p1(t) occur and 
follow 
 

1)()( 10 =+ tptp                              (11) 
 

p0(t) can be given in Eq. (10) and p1(t) can be 
given as 1−p0(t). According to Eq. (9), the function of 
non-blocking probability S(xe) can be obtained as: 
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Equation (12) is a differential equation for xen and xe, 

with S(xe)=dxen/dxe and ,d)( e
 

0 een
e xxSx

x
′′= ∫  and the 

analytical solution follows  

γ
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Meanwhile, S(xe) can be obtained as: 
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The transformed fraction f accounting for the 

one-scale blocking arising from the anisotropic growth 
can be expressed as: 
 

)exp(1
1)exp(1

e
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3.2.2 k-scale blocking 
Analogously, if an aggressor encounters the k-scale 

blocking without any higher-scale blocking, then k+1 
events, namely, the probability of the particle unblocked 
p0(t) and the probabilities of the particle blocked once 
p1(t), twice p2(t),… and k-scale pk(t) occur and follow 
 

1)(
0

=∑
=

k

i
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The probability of the aggressor encountering the 

previous (k−1) scales blocking satisfies Eq. (10), and the 

pk(t) can be given as ∑
−

=
−

1

0
)(1

k

i
i tp . Applying S(xe)= 

dxen/dxe, Eq. (9) can be rewritten as:  
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Since Eq. (17) is a non-linear ordinary differential 
equation, the exact analytical solution to this equation is 
not feasible. Nevertheless, numerical calculations show 
that the transformed fraction can be still obtained 
through f=1−exp[−xen(t)] [16]. 
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3.2.3 Infinite-scale blocking 
According to Eq. (10), an aggressor encountering 

infinite-scale blocking, pN(t), satisfies 
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∞
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Inserting Eq. (10) into Eq. (9) with N approaching 

infinity yields 
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Eq. (19) can be rewritten as: 
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Applying dxen=S(xe(t))dxe, the differential equation 

Eq. (20) can be solved as: 
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At last, the transformed fraction f can be expressed 

as: 
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γ
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Note that Eq. (23) is completely the same as the 

phenomenological Eq. (6) with ξ=2−γ (0<γ<1), which 
shows that the phenomenological treatment (see Eq. (6)) 
corresponds just to the extreme case where the particle 
encounters the infinite-scale blocking. 
 
3.3 Avrami exponent and effective activation energy 

Avrami exponent is commonly used as a tracer of 
the mechanisms underlying the transformation. However, 
anisotropic growth of neighboring particles leads to 
mutual blocking and then the retardation of 
transformation. Therefore, the anisotropic effect can be 
evaluated from the varying Avrami exponent. 

Generally, for isothermal transformation, the 
Avrami exponent is often evaluated by plotting 
ln(−ln(1−f)) versus ln t, whereas the effective activation 
energy is evaluated by plotting ln t versus 1/T [15,17]. 
Applying f=1−exp[−xen(xe)], in combination with Eq. (7), 

a new expression for Avrami exponent subjected to 
anisotropic effect, nnew, is deduced as: 
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where n corresponds to the analytical expression 
obtained from the modular model for transformation 
assuming different nucleation and isotropic growth 
modes (see Ref. [15]). 

Analogously, a new expression for effective 
activation energy of transformation subjected to 
anisotropic effect can be obtained as: 
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It should be noted that, in Eq. (25), Q is according 

to the modular model expressed as (d/mQG+(n− 
d/m)QN)/n [15,17]. Then the relationship between Qnew 
and nnew can be deduced as: 
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                               (26) 
where d is the growth dimensionality; m is the growth 
mode parameter (m=1 for interface-controlled growth 
and m=2 for volume diffusion-controlled growth); QG is 
the growth activation energy and QN is the nucleation 
activation energy. Equation (26) clearly shows that the 
anisotropic effect directly acts on the dimensionality of 
growth. This makes sense since the particle morphology 
changes after encountering interference. However, QG 
and QN hold unaffected, and then the overall effective 
activation energy is not affected by the anisotropic effect. 
 
4 Evolution of anisotropic effect with 

transformation 
 

On the basis of JMAK theory, if all the particles 
anisotropically grow in an infinite matrix without the 
influence of other particles, each exhibits the same rate 
distribution and shape but different orientations. 
However, the impingement of anisotropic particles 
certainly exists, which must change the rate distribution, 
the shape and even the particle orientation. From the 
statistic viewpoint, with transformation proceeding, the 
evolution of anisotropic effect is bound to happen. 

From Section 3.3, it is necessary to introduce a 
parameter, μ, which can reflect the evolution of 
anisotropic effect as:  

S
x
x

en

e=μ                                  (27) 
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According to Section 3.1, when t→0, xen→xe and 
S→1, then μ→1; when t→∞, xen→xeS, then μ also 
approaches 1. It means that isotropic growth has 
dominance at the initial stage and last stage of the 
transformation. In other words, at the end of 
transformation, all particles have a tendency to grow 
isotropically because the rate distributions again tend to 
the same and/or particles orientations tend to parallel 
after adequate impingement. However, at the middle 
stage, the dominance of isotropic growth is undermined, 
owing to a severe blocking effect arising from 
anisotropic growth. The conclusion was also found by 
SHEPILOV and BAIK [6] and BIRNIE III and 
WEINBERG III [7], but they did not provide a valid 
interpretation. 

An example is taken to expound the analysis. 
Assuming mixed nucleation and three-dimensional (3D) 
interface-controlled growth with model parameters as 
N0=5×1015 m−3+·s−1, N*=1×1010 m−3, v0=1×109 m/s, 
QN=100 kJ/mol and QG=200 kJ/mol (as described in Ref. 
[15], N0 is the temperature-independent nucleation rate; 
N* is the number of pre-existing nuclei per unit volume; 
v0 is the pre-exponential factor for growth; QN is the 
nucleation activation energy and QG is the growth 
activation energy), for isothermal transformation at 
T=680 K, the evolution of nnew with f is obtained, 
subjected to the same-scale blocking but different γ (e.g. 
only 1-scale blocking occurring but γ=0.2, 0.4, 0.6, 0.8, 
see Fig. 2(a)), and subjected to different- scale blocking 
but the same γ (e.g. γ=0.4 and k-scale blocking with k=0, 
1, 2, 3, see Fig. 2(b)). It is shown clearly that the 
transformation accounting for the blocking effect arising 
from anisotropic growth depends on not only γ but also k. 

From Eq. (27), xe/xen and S act as the two key 
factors to evaluate the anisotropic effect. Applying the 
same model parameters as that used for Fig. 2, the 
evolution of xe/xen, S and μ with f, as well as the 
evolution of nnew and n with f, subjected to γ=0.4 and 
1-scale blocking, is calculated and shown in Fig. 3. 
Clearly, xe/xen increases monotonously with f, but S 
declines with f. Consequently, μ declines first, reaches a 
minimum value, and then increases. This implies that 
three basic regimes of transformation could be identified. 
At the initial stage of transformation, xe/xen and S both 
approach to unity, then μ→1; the equivalent isotropic 
particles each grow independently without the blocking 
effect. At the middle stage of transformation, severe 
blocking effect occurs; μ does have a minimum value at 
some time. At the final stage of transformation, however, 
the blocking effect is alleviated, so that μ tends to the 
value where the blocking has not occurred, i.e. μ→1 as 
seen in Fig. 3. 

 

 
 
Fig. 2 Evolution of nnew with f for transformation assuming 
mixed nucleation and 3D interface controlled growth: (a) 
Same-scale blocking but different γ; (b) Different-scale 
blocking but same γ 
 

 
Fig. 3 Evolution of xe/xen, S and μ with f, as well as evolution of 
n and nnew with f, for transformation subjected to 1-scale 
blocking and γ=0.4 (Values of model parameters are same as 
those in Fig. 2) 
 
5 Conclusions 
 

1) The effect of anisotropic growth on the kinetics 
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of solid-state transformation is described. Anisotropic 
effect on the transformation depends on not only the 
non-blocking factor γ but also the blocking scale k. 

2) Blocking effect arising from anisotropic growth 
leads to a reduction of Avrami exponent, but the 
unblocked value in the end; whereas effective activation 
energy is not affected by the anisotropic effect. 

3) Anisotropic effect directly acts on the 
dimensionality of growth. 

4) Evolution of anisotropic effect with the fraction 
transformed is taken into account, which can be reflected 
by the behavior of μ, and the anisotropic effect is more 
severe at the middle stage of transformation and is 
alleviated at both initial and last stage. 
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颗粒各向异性生长对固态相变动力学的影响 
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摘  要：基于对颗粒各向异性生长引起阻碍效应的几何概率分析，研究生长各向异性效应对固态相变动力学的影

响。结果表明：阻碍效应导致生长速率降低，进而导致 Avrami 指数的规律变化。根据先前的解析模型，推导动

力学参数 Avrami 指数和总有效激活能的解析表达。各向异性效应对相变的影响不仅取决于非阻碍因子γ，还取决

于阻碍级数 k。各向异性效应直接作用在颗粒生长维度上，却不影响转变过程的总有效激活能。考虑到各向异性

生长所引起的阻碍效应与转变分数的演化，发现各向异性效应在相变过程中期最为剧烈。 

关键词：转变动力学；各向异性生长；阻碍效应；Avrami 指数 
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