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Abstract: Aiming at the problems of the traditional method of assessing distribution of particle size in bench blasting, a support 
vector machines (SVMs) regression methodology was used to predict the mean particle size (X50) resulting from rock blast 
fragmentation in various mines based on the statistical learning theory. The data base consisted of blast design parameters, explosive 
parameters, modulus of elasticity and in-situ block size. The seven input independent variables used for the SVMs model for the 
prediction of X50 of rock blast fragmentation were the ratio of bench height to drilled burden (H/B), ratio of spacing to burden (S/B), 
ratio of burden to hole diameter (B/D), ratio of stemming to burden (T/B), powder factor (Pf), modulus of elasticity (E) and in-situ 
block size (XB). After using the 90 sets of the measured data in various mines and rock formations in the world for training and 
testing, the model was applied to 12 another blast data for validation of the trained support vector regression (SVR) model. The 
prediction results of SVR were compared with those of artificial neural network (ANN), multivariate regression analysis (MVRA) 
models, conventional Kuznetsov method and the measured X50 values. The proposed method shows promising results and the 
prediction accuracy of SVMs model is acceptable.  
Key words: rock fragmentation; blasting; mean particle size (X50); support vector machines (SVMs); prediction 
                                                                                                             
 
 
1 Introduction 
 

Rock fragmentation, the fragment size distribution 
of blasted rock, is considered one of the most significant 
indices of production blasting because of its direct 
effects on the costs of drilling and blasting and on the 
economics of the subsequent operations of loading, 
hauling and crushing [1−3]. The key objective of 
production blasting is to achieve optimum rock 
fragmentation and control the particle size distribution of 
a muckpile after blasting. Improvement of blasting 
results provides increase in loader and excavator 
productivity due to increased diggability capacity, and 
increased bucket and truck fill factors. Suitable and 
uniform particle size distribution lead to increase in 
crusher and mill throughput and decrease in energy 
consumption in size reduction process. Additionally, 
uniform particle size distribution also eliminates the need 
of the secondary blasting of the big boulders [4, 5]. 

Over the past three decades, empirical models for 
the estimation of size distribution of rock fragments have 
been developed [6−10]. KUZNETSOV [6] formulated a 
semi-empirical equation based on field investigations 
and a review of previously published data that related the 
mean fragment size to the mass of explosive, the volume 
blasted and the rock strength. The Kuz–Ram 
fragmentation model was developed by CUNNINGHAM 
[7] based on the Kuznetsov and Rosin–Rammler 
equations as well as an algorithm. The Rosin–Rammler 
equation proposed by ROSIN and RAMMLER [8] was 
used to characterize the partial-size distribution of a 
material for use in a variety of applications. GHEIBIE et 
al [9] established a modified Kuz–Ram fragmentation 
model and used it at the Sungun Copper Mine. But 
regards to inconstant situations in practice such as 
existence of underground waters, sudden change of 
geological structure, blasting pattern size, several 
blasting must be tested frequently, which is expensive 
and time consuming. Therefore, operational and capital  
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costs are increased, and the system is no longer 
profitable. Sieve analysis [10] and image analysis [11, 
12] of rock fragmentation have been used in mines and 
quarries to control the quality of blasting and measure 
blast fragmentation distribution. However, because muck 
piles are large, use of sieve analysis is tedious and time 
consuming and thus not practicable for measurement of 
blast fragmentation distribution of muck piles. 

Rock fragmentation depends on many variables 
such as rock mass properties, site geology, in situ 
fracturing and blasting parameters, and as such has no 
complete theoretical solution for its prediction. In such 
situations, a wide range of statistical and machine 
learning models have been developed and applied in this 
field to measure the fragmentation distribution and 
predict X50 resulting from rock blast fragmentation [4, 5, 
13−16]. Multivariate regression analysis (MVRA) was 
used to develop fragmentation prediction models by 
ALER et al [13] and HUDAVERDI et al [14] taking into 
account of intact and joints rock properties, the type and 
properties of explosives and the drilling pattern. A blast 
fragmentation Monte Carlo-based simulation program 
proposed by MARIO and FRANCESCO [15], based on 
the Kuz–Ram fragmentation model, was developed to 
predict the entire fragmentation size distribution. 
MONJEZI et al [16] proposed a fuzzy logic model to 
predict fragmentation caused by blasting at Gol-E-Gohar 
iron mine. MONJEZI et al [4] and KULATILAKE et al 
[5] developed a neural network methodology to predict 
X50 resulting from rock blast fragmentation with regards 
to the existence situations and the practical data. 

Among artificial intelligence (AI) tools, the 
artificial neural network (ANN) approach has been 
recently applied to developing predictive rock 
fragmentation models which have provided significant 
improvements in accuracy compared with the multi- 
variate regression based models [4, 17−26]. Support 
vector machines (SVMs) are another efficient machine 
learning (ML) technique derived from statistical learning 
theory by VAPNIK [17]. However, since the middle of 
1990s, the algorithms used for SVMs have been emerged 
with greater availability of geotechnical practice and 
mining science [18−23], paving the way for numerous 
practical applications. It is therefore motivative to 
investigate the capability of SVMs in mean particle size 
(X50) resulting from rock blast fragmentation prediction. 

The current research tries to explore the feasibility 
of a regression of SVMs model to predict X50 of rock 
fragmentation due to blasting in several mines. The 
theory and procedure of SVMs are briefly reviewed. The 
development of SVMs based on rock fragmentation 
models is presented and the performance of predictive 
models is discussed. 

 
2 Regression theory of SVMs 
 
2.1 Basic idea of SVR model 

SVMs [17, 24] have been introduced as an effective 
model in both ML and data mining communities for 
solving both classification and regression problems. 
Support vector regression (SVR) is a powerful ML 
method that is useful for constructing data-driven 
non-linear empirical process models. It shares many 
features with ANNs but possesses some additional 
desirable characteristics and is gaining widespread 
acceptance in data-driven non-linear modeling 
applications. Comprehensive tutorials on SVMs for 
regression are available in many sources. Brief summary 
of the SVR theory for regression is given here primarily 
based on GOPALAKRISHNAN and KIM [19], SAMUI 
et al [21], ZHOU et al [22, 23], GUNN [24], LI [25] and 
CHANG et al [26]. 

The basic concept of SVR is to map nonlinearly the 
original data x into a higher dimensional feature space 
and solve a linear regression problem in this feature 
space [17–26]. First, we use a linear function to regress 
the data set {( )}p

i i iV = x , y , where xi is the input vector to 
the SVR model, yi is the actual output value, from which 
it learns the input–output relationship, and p denotes the 
total number of data patterns. The SVMs regression 
model can be expressed as [17,22−24]: 
 

( ) ( )f x b w xϕ= + ⋅                             (1) 
 
where the function φ(x) denotes the high dimensional 
kernel-induced feature space, the parameters w and b are 
a support vector weight vector and a bias term that are 
calculated by minimizing the following regularized risk 
function: 
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In Eq. (3), the loss equals zero if the error of 

forecasting value is less than ε, otherwise the loss is 
beyond ε. 

Two positive slack variables, ξi and ξi
*, i = 1, 2, …, 

n, can be used to measure the deviation (qi − f(xi)) from 
the boundaries of the ε-insensitive zone. That is, they 
represent the distance from actual values to the 
corresponding boundary values of ε-insensitive zone. By 
using slack variables, Eq. (2) is transformed into the 
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following constrained form: 
Minimize: 
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By using Lagrangian multipliers and Karush– 

Kuhn–Tucker (KKT) conditions to Eq. (4), it thus yields 
the following dual Lagrangian form [17,24], 
Maximize: 
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subject to the constraints, 
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The Lagrangian multipliers in Eq. (6) satisfy the 

equality αiαi
*=0. The Lagrangian multipliers, αi and   

αi
*, are calculated and an optimal desired weight   

vector of the regression hyperplan is obtained by *w =  
*

1
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−∑  Hence, the general form of the 

SVMs-based regression function can be written as 
[17,24]: 
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Based on the KKT conditions of solving quadratic 
programming problem, (αi− *

ia ) in Eq. (7), only some of 
them will be held as non-zero values. According to Eq. 
(7), it is evident that support vectors are only used in 
determining the decision function since the coefficients 
(αi− *

ia ) of other data points are all equal to zero. In Eq. 
(7), K(xi, x) is called the kernel function. The concept of 
kernel function K(xi, x)=Φ(xi)·Φ(x) has been introduced 
to reduce the computational demand [18]. 

In SVMs, typical common kernels described in 
GUNN [18] have been used, such as polynomial, radial 
basis function (RBF), Gaussian function, multilayer 
perceptron, sigmoid, for non-linear cases. In this way, a 
nonlinear model in the original space can be transformed 
to the linear model in the new space. In the present work, 
SVMs constructed by RBF kernel which is given by Eq. 
(8) is used because it yields better forecasting 
performance[17,25,26]. 
 
K(x, y)=exp(−|x−y|2/2g2)                        (8) 

 
where g denotes the width of the RBF. 

Here, C, g and ε are user-determined parameters by 
an iterative process selecting an optimum value based on 
the full training data set. The election of the parameters 
plays an important role in the performance of SVMs. 
Further detailed mathematical description over SVR can 
be referred from Refs. [17−26]. 
 
2.2 SVMs model computational procedure 

The approach for the development of the 
SVR-based correlation can be divided into five stages:  
1) Collection of data sets, which have been divided into 
two sub-sets, namely, a training dataset and a testing 
dataset; 2) Linear scaling of the train data set from 0 to 1, 
calculation of the various parameters (model parameters) 
for establishing the regression function; 3) Estimation of 
the optimal model parameters (C, g, ε) using the 
combined approach of K-fold cross validation and grid 
search method (GSM) [22,23,27]; 4) Establishment of 
the final SVR model for X50 of rock blast fragmentation 
with the help of the best parameters; 5) Evaluation and 
validation of the SVR model by evaluation with testing 
data and comparing it with literature correlations. For 
better understanding, a flow diagram describing the 
establishment of the SVR-based model for prediction X50 
resulting from rock blast fragmentation is shown in   
Fig. 1. 
 

 

Fig. 1 Flowchart of key steps for establishment of SVR model 
 
3 Experimental studies for forecasting X50 of 

rock blast fragmentation based on SVR 
 
3.1 Collection of data set 

In the present study, the blast database is taken from 
HUDAVERDI et al’s results [5, 14] collected in various 
mines and rock formation in the world, as given in  
Table 1 [5,14]. A total of 90 blasts shown in    
Table 1 are evaluated to form a blast database. The blasts  
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Table 1 Samples of training for rock fragmentation analysis of some projects around the world [5, 14] 

No. S/B H/B B/D T/B Pf/(kg·m−3) XB/m E/GPa X50/m 

En1 1.24 1.33 27.27 0.78 0.48 0.58 60.00 0.37 

En2 1.24 1.33 27.27 0.78 0.48 0.58 60.00 0.37 

En3 1.24 1.33 27.27 0.78 0.48 1.08 60.00 0.33 

En4 1.24 1.33 27.27 0.78 0.48 1.11 60.00 0.42 

Rc2 1.17 1.50 26.20 1.12 0.30 0.68 45.00 0.48 

Rc3 1.17 1.58 26.20 1.22 0.28 0.68 45.00 0.48 

Rc4 1.17 1.96 26.20 1.30 0.34 1.56 45.00 0.75 

Rc5 1.17 1.75 26.20 1.31 0.29 1.56 45.00 0.96 

Mg1 1.00 2.67 27.27 0.89 0.75 0.83 50.00 0.23 

Mg2 1.00 2.67 27.27 0.89 0.75 0.78 50.00 0.25 

Mg3 1.00 2.40 30.30 0.80 0.61 1.02 50.00 0.27 

Mg4 1.00 2.40 30.30 0.80 0.61 0.75 50.00 0.30 

Ru1 1.13 5.00 39.47 1.93 0.31 2.00 45.00 0.64 

Ru2 1.20 6.00 32.89 3.67 0.30 2.00 45.00 0.54 

Ru3 1.20 6.00 32.89 3.70 0.30 2.00 45.00 0.51 

Ru4 1.20 6.00 32.89 4.67 0.22 2.00 45.00 0.64 

Mr1 1.20 6.00 32.89 0.80 0.49 1.67 32.00 0.17 

Mr2 1.20 6.00 32.89 0.80 0.51 1.67 32.00 0.17 

Mr3 1.20 6.00 32.89 0.80 0.49 1.67 32.00 0.13 

Mr4 1.20 6.00 32.89 0.80 0.52 1.67 32.00 0.17 

Db1 1.25 3.50 20.00 1.75 0.73 1.00 9.57 0.44 

Db2 1.25 5.10 20.00 1.75 0.70 1.00 9.57 0.76 

Db3 1.38 3.00 20.00 1.75 0.62 1.00 9.57 0.35 

Db4 1.50 5.50 20.00 1.75 0.56 1.00 9.57 0.55 

Sm1 1.25 2.50 28.57 0.83 0.42 0.50 13.25 0.15 

Sm2 1.25 2.50 28.57 0.83 0.42 0.50 13.25 0.19 

Sm3 1.25 2.50 28.57 0.83 0.42 0.50 13.25 0.23 

Ad1 1.20 4.40 28.09 1.20 0.58 0.77 16.90 0.15 

Ad2 1.20 4.80 28.09 1.20 0.66 0.56 16.90 0.17 

Ad3 1.20 4.80 28.09 1.20 0.72 0.29 16.90 0.14 

Ad4 1.20 4.00 28.09 1.60 0.49 0.81 16.90 0.16 

Oz1 1.00 2.83 33.71 1.00 0.48 0.45 15.00 0.27 

Oz2 1.20 2.40 28.09 1.00 0.53 0.86 15.00 0.14 

Oz3 1.20 2.40 28.09 1.00 0.53 0.44 15.00 0.14 

Oz4 1.25 4.50 22.47 1.50 0.76 0.66 15.00 0.20 

 
shown by symbols ‘Rc’, ‘En’ and ‘Ru’ were collected 
from HAMDI et al [2] and ALER et al [3] research 
conducted at the Enusa and Reocin mines, which are 
located in Spain. The Enusa Mine is an open-pit uranium 
mine in a schistose and is a moderately to heavily folded 
formation. The Reocin mine is an open-pit and 
underground zinc mine. The blasts shown by symbol 
‘Mg’ were performed in the Murgul Copper Mine, which 
is a large open-pit mine located in the Northeastern 

Turkey [28]. The blasts shown by symbol ‘Mr’ were 
obtained from OUCHTERLONY et al’s [29] research 
performed in the Mrica Quarry in Indonesia. The blasts 
indicated with ‘Db’ symbol were performed in the 
Dongri−Buzurg open-pit manganese mine situated in 
Central India [30]. The blasts indicated with symbol 
‘Sm’ were performed in an open-pit coal mine in Soma 
Basin, which is located in Western Turkey [31]. The 
blasts shown by symbols ‘Ad’ and ‘Oz’ were performed 
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at the Akdaglar and Ozmert Quarries of Cendere basin 
located in the northern Istanbul [5, 14]. The scatter plot 
matrix of the original data set is given in Fig. 2. No 
obvious correlation among the variables is observed. For 
implementing the SVR, the data are divided into two 
sub-sets: 

1) A training dataset. This is required to train the 
model. In this study, 90 out of a total of 102 data sets are 
considered for training. 

2) A testing dataset. This is required to estimate the 
model performance. In this study, the remaining 12 out 
of 102 are used as the testing data set. 
 
3.2 Establishment of SVMs model 

Rock fragmentation is considered a dynamic 
instability. Particle size distribution of a muck pile is 
controlled by three main blasting parameters: blast 
design parameters, explosive parameters and properties 
of the rock mass [5, 14, 32−34]. To estimate 
fragmentation, five main blast design parameters are 
used in the developed SVMs models. They are the 
burden (B), spacing (S), bench height (H), stemming (T) 
and hole diameter (D). All these parameters are 
controllable. Figure 3 shows most of the blast design 

parameters used in a bench blast [5, 35]. The ratio of 
bench height to drilled burden (H/B), ratio of spacing to 
burden (S/B), ratio of burden to hole diameter (B/D) and 
ratio of stemming to burden (T/B) are the blast design 
parameters used. The powder factor (Pf) is considered an 
explosive parameter. Thus 7 parameters were used to 
establish the fragmentation prediction models based on 
SVR incorporating the blast design parameters, modulus 
of elasticity (E) and in-situ block size (XB) [5, 14]. Table 
2 indicates the relevant parameters as well as their 
respective symbols used to develop fragmentation 
prediction models with their range, mean and standard 
deviation, respectively. 

The boxplot of the original data set is given in   
Fig. 4. For the most of the data groups, the median is not 
in the centre of the box, which indicates that the 
distribution of the most of the data groups is not 
symmetric (Fig. 4). In addition, dependent variables of 
H/B, XB and E do not have any outliers whereas S/B, B/D, 
T/B, Pf and X50 have at least one outlier (Fig. 4). 

LI [25], CHANG and LIN [26] developed an 
Libsvm toolbox for SVR modeling in Matlab  
application. This toolbox is used here for the application 
of SVR in predicting X50 of rock fragmentation due to  

 

 
 
Fig. 2 Scatter plot matrix of original data set 
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Fig. 3 Geometric blast design parameters terminology [5, 35] 
 
Table 2 Descriptive statistics of input and output parameters 
with their range, mean and standard deviation for SVR 
modeling 

Type of data Parameter Range Mean Std. Dev.

Input S/B 1.00−1.75 1.20 0.11 

 H/B 1.33−6.82 3.46 1.64 

 B/D 17.98−39.47 27.22 4.80 

 T/B 0.50−4.67 1.27 0.69 

 Pf 0.22−1.26 0.53 0.24 

 XB 0.02−2.35 1.18 0.48 

 E 9.57−60.00 30.59 17.76

Output X50 0.02−0.96 0.32 0.19 
X50 is the mean particle size, m; the total number of data points is 102. 
 

 
Fig. 4 Boxplot of original data set 
 
blasting. The input–output data are scaled to lie between 
0 and 1 by using the following equation [18−24].  
 
xnorm=(x−xmin)/(xmax−xmin)                      (9) 
 
where xnorm is the normalized value, x is the actual value, 
xmax is the maximum value, and xmin is the minimum 
value. 

The engineering data in Refs. [5,14] are introduced 
to show how the SVR method is applied in practice. In 
the present study, the above SVR model is used for 

prediction of X50 resulting from rock blast fragmentation. 
In SVR, each of the input variables (S/B, H/B, B/D, T/B, 
Pf, XB, E) is first normalized to its respective maximum 
values [18−24]. The output variable X50 is also 
normalized with respect to the maximum mean particle 
size value. 90 sets of samples are selected as the training 
samples of SVR model (listed in Table 1) [5,14]. SVR 
model is established using the SVR theory discussed 
above. 
 
3.3 Testing and validation of SVMs 

When applying SVR, the goodness of fit is 
determined by the penalty factor C. A higher C value 
means more support vectors; but a too high C value 
could drop the regression performance, so it is helpful 
for the regression analysis to choose a suitable penalty 
factor. Insensitive parameter g is an interpretation of the 
regression curve accuracy. A greater g value means the 
lower generalization performance of the regression curve. 
Libsvm [25,26] provides a parameter selection tool using 
the RBF kernel: cross validation via parallel GSM 
[22,23,27]. While cross validation is available for both 
SVC and SVR. For the grid search, currently we support 
only C-SVC with two parameters C and g. They can be 
easily modified for other kernels such as linear and 
polynomial, or for SVR. In this study, the free 
parameters of SVR are selected followed a 5-fold 
cross-validation experiment to control generalization 
capability of SVMs, and the RBF kernel is used as the 
kernel function of the SVR because it tends to give better 
performance. Gaussian kernel function is adopted as the 
kernel function of the samples training, obtaining the 
best parameters by GSM [25]. Figure 5 shows an 
example of the GSM result, where the x-axis and y-axis 
are log2C and log2g, respectively. The z-axis is the 5-fold 
average performance. The findings of this experiment are 
that SVR is quite robust against parameter selections. In 
the present study, training and testing of SVR are carried 
out by using Matlab 7.0 program [34]. 
 

 

Fig. 5 MSE values for different combinations of log2C and 
log2g 
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The result of the SVR parameter selection by GSM 
is shown in Fig. 5 (3D view). When C is 5.657, g =1 and 
the average value of MSE is 0. 0.0374. 90 sets of training 
sample data are back evaluated one by one using the 
SVMs model of rock fragmentation and compared with 
the actual situation. The comparison of results of X50 
estimation for training data are shown in Fig. 6. The 
regression mean-square error of the study sample is 
0.0144, and the square correlation coefficient is 0.9263. 
From Fig. 6, SVR has good performance for regression 
forecast, which proves that the model has stable and 
reliable prediction ability. Therefore, the SVMs model is 
feasible and effective for rock fragmentation forecasting 
and can be put into use. As shown in Fig. 6, the 
prediction curve obtained by SVR training sample fits 
good. 
 

 

Fig. 6 Actual vs prediction values using SVR with training data 
 

Here is used to validate the predictive models based 
on the comparison of the predicted and measured (real) 
values. 12 testing samples (listed in Table 3) are 
validated by the SVR model. The results are identical 

with the actual mean particle size and the accuracy of 
this rock fragmentation regression model is good. 
 
4 Results and discussion 
 

Many traditional methods for mean particle size 
prediction of rock blast fragmentation have been 
presented in the literature. Among these, three are chosen 
for the purpose of assessing the relative performance of 
the SVMs model. These include the Kuznetsov method 
[5,14], MVRA method [5,14] and ANN approach [5]. 
The comparison of the results of X50 estimation obtained 
using the SVR, ANN and the two traditional methods for 
the testing dataset are presented in Table 4. 

In estimating the SVR model prediction 
performance, the results of SVR models are compared 
with that of Kuznetsov method, MRVR and ANN 
method. Computing indexes, such as correlation 
coefficient (R2), mean absolute error (MAE) and root 
mean square error (RMSE), can be used to evaluate the 
prediction accuracy of SVR and other prediction models 
[18−24]. These indexes can be calculated by the 
following equations: 
 

∑
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where Ti, Oi and n represent the measured output, the 
predicted output and the number of input-output data 
pairs, respectively. 

 
Table 3 Summary of testing data for rock fragmentation analysis of some projects around the world [5, 14] 

No S/B H/B B/D T/B Pf/(kg·m−3) XB/m E/GPa X50/m 

En13 1.24 1.33 27.27 0.78 0.48 1.11 60.00 0.47 

Ru7 1.13 5.00 39.47 3.11 0.31 2.00 45.00 0.64 

Mg8 1.10 2.4 30.3 0.80 0.55 1.23 50.00 0.44 

Mg9 1.00 2.67 27.27 0.89 0.75 0.77 50.00 0.25 

Mr12 1.25 6.25 31.58 0.63 0.48 1.03 32.0 0.20 

Db10 1.15 4.35 20.00 1.75 0.89 1.00 9.57 0.35 

Mi7 1.00 1.67 33.33 0.70 0.47 0.09 10.00 0.08 

Sm8 1.25 2.5 28.57 0.83 0.42 0.50 13.25 0.18 

Oz8 1.20 2.4 28.09 1.00 0.53 0.82 15.00 0.23 

Oz9 1.11 3.33 30.34 1.11 0.47 0.54 15.00 0.17 

Ad23 1.11 4.44 18.95 1.67 1.25 1.63 16.90 0.21 

Ad24 1.28 3.61 18.95 1.67 0.89 0.61 16.90 0.20 

Ad25 1.20 2.80 28.09 1.00 0.50 1.49 16.90 0.17  
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Table 4 Comparison of results of X50 estimation for testing sets 
by different methods 

No. X50A/m X50K/m X50P1/m X50P2/m X50P3/m
En13 0.47 0.48 0.39 0.42 0.48 
Ru7 0.64 0.71 0.51 0.63 0.61 
Mg8 0.44 0.42 0.40 0.37 0.43 
Mg9 0.25 0.33 0.24 0.28 0.25 
Rc1 0.46 0.52 0.52 0.43 0.54 

Mr12 0.20 0.27 0.16 0.18 0.22 
Db10 0.35 0.09 0.16 0.33 0.39 
Sm8 0.18 0.38 0.19 0.19 0.18 
Oz8 0.23 0.22 0.17 0.14 0.20 
Oz9 0.17 0.25 0.17 0.19 0.16 

Ad23 0.21 0.12 0.19 0.21 0.23 
Ad24 0.20 0.13 0.15 0.22 0.19 

X50A: Actual mean particle size; X50K: Kuznetsov mean particle size; X50P1: 
Predicted X50 by MVRA; X50P2: Predicted X50 by ANN; X50P3: Predicted X50 
by SVR. 
 

In Table 5, R2, MAE and RMSE between the 
observed and predicted values of SVR model are found 
to be 0.962, 0.066 and 0.006, respectively for testing data. 
From Table 5, the same for the predicted values by using 
Kuznetsov method [5,14] are found to be 0.614, 0.344 
and 0.025 respectively, the corresponding values by 
MRVR method [5,14] are 0.815, 0.170 and 0.017, 
whereas the corresponding values by ANN method [5] 
are 0.941, 0.107 and 0.009. So, it can be seen that the 
SVR method has very high R2 value (0.962) and exhibits 
good correlation between predicted X50 and actual X50.  
In Fig. 7 the comparison of the predicted X50 using 

 
Table 5 Performance indexes of R2, RMSE and MAE 

Method Linear Fit R2 RMSE MAE

Kuznetsov y=0.0252+0.9519x 0.614 0.025 0.344

MRVR y=0.0035+0.8442x 0.815 0.017 0.170

ANN y=0.0110+0.9100x 0.941 0.009 0.107

SVR y=0.0015+1.0163x 0.962 0.006 0.066

 

 

Fig. 7 Comparison of predicted mean particle size by different 
methods with measured values 

Kuznetsov’s method, MVRA, ANN and SVR methods 
and their deviation from the observed one is shown. It is 
observed that the SVR predicted values are less scattered 
and are close to the observed values signified by its 
closeness to the line of equality. 

Table 5 shows that the SVMs method performs 
better than the traditional methods. It can be concluded 
that the SVR model can be applied to forecasting the 
rock fragmentation in opencast mines regression with 
high accuracy. 

The data are also presented as boxplots in Fig. 8. By 
comparing the size of the boxes for each predictive 
model with the observed data, clearly the predictive 
model based on SVR almost duplicates the observed 
values, indicating that this is the best method for 
predicting X50. 
 

  
Fig. 8 Boxplot of testing data set by different methods with 
measured values 
 

The above-mentioned comparisons indicate that all 
four models are competitive with each other for X50 
prediction in rock fragmentation, but the performance of 
the SVMs is relatively superior to the others. Moreover, 
the SVMs have some added advantages, which come 
from the specific formulation of a (convex) objective 
function with constraints. This function is solved using 
Lagrange multipliers and has some inherent advantages 
and characteristics [18−24]: 1) a global optimal solution 
exists that will be found; 2) the result is a general 
solution avoiding overtraining; 3) the solution is sparse 
and only a limited set of training points contribute to this 
solution; and 4) nonlinear solutions can be calculated 
efficiently due to the usage of inner products. 

In particular, the use of SRM principle in defining 
cost function provides more generalization capacity with 
the SVMs compared with the ANN, which uses the ERM 
principle. The number of free parameters is another 
advantage of using the SVMs. In the case of RBF, there 
are only three parameters in the SVMs, namely, C, g, and 
ε, whereas in the ANN, there are a large number of 
controlling parameters, including the number of hidden 
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layers, the number of hidden nodes, learning rate, 
momentum term, the number of training epochs, transfer 
functions, and weight initialization methods. Obtaining 
an optimal combination of these parameters is a difficult 
task as well. Another major advantage of the SVMs is its 
optimization algorithm, which includes solving a linearly 
constrained quadratic programming function leading to a 
unique, optimal, and global solution compared with the 
ANN. Moreover, there is a high potential for further 
improvement of the SVMs performance [19−24]. While 
in the MVRA, capturing of high non-linearity 
incorporating many parameters is a difficult task with 
MVRA. Because the blast fragmentation distribution 
depends on many parameters, and the process is highly 
complex due to the heterogeneity and anisotropy of a 
discontinuous rock mass system, it is impossible to 
derive an equation for fragmentation distribution purely 
from theoretical and mechanistic reasoning. 
 
5 Conclusions 
 

1) A new method is presented to forecast the rock 
fragmentation due to bench blasting by using the SVMs 
model. The factors including blast design parameters, 
explosive parameters, modulus of elasticity and in-situ 
block size are taken into account to build a forecast SVR 
model. A SVR model is obtained through training 90 sets 
of practical measuring samples and 12 new data. The 
result indicates that SVR method is scientific and 
feasible with high accuracy, which provides a new way 
for the regression prediction of rock fragmentation. 

2) The proposed method shows promising results 
and proves to be competitive with the widely used ANN 
and conventional Kuznetsov method, MVRA model. 

3) The SVR theory has been successfully 
demonstrated for forecasting X50 resulting from rock 
blast fragmentation and some problems should be 
researched in the future. One direction of future work 
would be enlarging the blast databases that will be used 
to develop fragmentation prediction models presented in 
this study, and another possible direction of future work 
would be considering additional rock parameters of the 
rock mass that would be subjected to blasting if 
information on such metrics is available. 
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台阶爆破岩石破碎平均粒径预测的支持向量机方法 
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摘  要：针对传统的岩石台阶爆破破碎评估问题，运用统计学理论，建立预测不同矿山岩石爆破破碎后的平均粒

径 (X50)的支持向量机 (SVMs)回归模型。爆破参数包括爆破设计参数、炸药参数、弹性模量及现场块度大小。SVMs

模型选用 7 个参量作为预测岩石爆破破碎的平均粒径 X50输入自变量：台阶高度与钻孔荷载比(H/B)，间距与荷载

比(S/B)，荷载与孔径比(B/D)，炮泥与荷载比(T/B)，粉因数(PF)，弹性模量(E)和现场块度大小(XB)。利用世界各地

不同矿山和岩层测量的 90 组数据来训练和测试 SVMs 模型，其他 12 组爆破数据来验证该模型的有效性，并将 SVR

的预测结果与人工神经网络(ANN)、多元回归分析(MVRA)、传统的 Kuznetsov 方法及 X50 实测值进行比较。该

方法显现出很好的效果，其预测精度是可以接受的。 

关键词：岩石破碎；爆破；平均粒径；支持向量机；预测 
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