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Abstract: A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors 
influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic modulus of rock, rock quality 
designation (RQD), area ratio of pillar, ratio of width to height of pillar, depth of ore body, volume of goaf, dip of ore body and area 
of goaf, were selected as discriminant indexes in the stability analysis of goaf. The actual data of 40 goafs were used as training 
samples to establish a discriminant analysis model to identify the stability of goaf. The results show that this discriminant analysis 
model has high precision and misdiscriminant ratio is 0.025 in re-substitution process. The instability identification of a metal mine 
was distinguished by using this model and the identification result is identical with that of practical situation. 
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1 Introduction 
 

In mining process of metal mines, a large number of 
underground goafs were brought about by using room 
and pillar method, a comprehensive law method and 
shrinkage method [1,2]. On the other hand, for most 
metal mines, such as Dachang mining, Luanchuan 
molybdenum, Changba zinc, Qinling gold and Kaiyang 
phosphate rock, there are also some underground goafs 
because of more than ten years non-governmental 
predatory exploitation. Statistics show that, in most mine 
accidents, goaf collapse is a very common incentive. And 
goaf has become one of main sources of harm, and is 
also risky in production [3,4]. Therefore, the risky 
identification of goaf is very important to ensure safety 
production of open and underground mining operations 
and to avoid the occurrence of major accidents in  
mines [5]. 

Many scholars have done a lot of work about risky 
identification. CHEN [6] has presented a monograph on 
the hazard identification, control and evaluation of the 
system discussed. And fuzzy comprehensive evaluation 
method (FCEM) [7], grey clustering analysis method 

(GCAM) [8,9] and artificial neural network (ANN) 
[10,11] theory have been used and got good effectiveness. 
Distance discriminant analysis method is a statistical 
analysis method based on observed characteristics 
(discriminant factor) of a certain number of samples and 
discriminant criterion, which had been used in mining 
and safety engineering recently [12−14]. However, for 
distance discriminant analysis method, the prior 
probability of each collectivity (Classification grade) is 
not taken into account and the difference of loss 
produced by mistake-discrimination is also neglected 
[11]. To solve the faults of distance discriminant analysis 
method, a Bayes discriminant analysis (BDA) model was 
presented to predict the stability of open pit slope in 
metal mines. 

In the present work, in combination of the Bayes 
discriminant analysis theory and actual situation and 
stability factors of goaf, a Bayes discriminant analysis 
model is built and used in a practical engineering. 
 
2 Bayes discriminant analysis method 
 
2.1 Basic ideology of Bayes discriminant 

Bayes discriminant is a probability discriminant 
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analysis and various types of distribution density 
functions should be obtained before proceeding. The 
priori distribution was used to descript the level of 
awareness of the study collectivity before extracting 
samples,  and then the posterior distribution was 
obtained by modifying the priori distribution based on 
extracted samples,  followed by a variety of statistical 
inference. Following is a brief introduction and a variety 
of types of general overall Bayes discriminant [15]. 
 
2.2 Bayes discriminant of two normal collectivities 

Suppose T
21 ),,,( PXXXG L=  is a collectivity with 

p member indexes(Considering p indexes),  and there 
are two collectivities, G1, G2, with distribution density 
functions, f1(X), f2(X). Suppose the priori distributions of 
G1 and G2 are  

)( 11 GPp = , )( 22 GPp =                         (1)  
with p1+p2=1. c(2|1) is the loss caused by misjudging G1 
to G2,  and c(2|1) is the loss caused by misjudging G2 to 
G1. 

When  ΣΣΣ == 21 for two normal collectivities, 
G1, G2, with c(2|1)= c(1|2), Bayes discriminant function 
can be expressed as:  

jjjjj pW ln5.0)()( 1TT1 +−= −− μΣμμΣX , j=1, 2  (2) 
 

Then, generalized squared distance function can be 
obtained as follows:  

jjjj pd ln2)()()( 1T2 −−−= − μXΣμXX           (3) 
 
with μ1 and μ2 as mean vectors of G1, G2. And then 
posteriori probability function can be obtained:  
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Normally, μ1, μ2 and Σ  are unknown and their 

estimation values 1μ̂ , 2μ̂  and Σ̂ can be obtained from 
training samples, then 
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The estimation of posteriori probability function is 
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Bayes discriminant criterion can be expressed as: 
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2.3 Bayes discriminant of multi-normal collectivities 
Suppose kjN jpj  , ,2 ,1),,(~ …=ΣμG  (k>2), and 
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Posteriori probability function is 
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Then optimal division can be obtained as: 
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μ1, μ2, …, μk and Σ can be replaced with the 
expected values, kμμμ ˆ  ˆˆ 21 ，，， L and Σ̂ . 
 
2.4 Evaluation of discriminant criterion 

The prior probability pα is allocated by the 
proportion of training samples of collectivity Gα to all 
samples, i.e., 
 

knn
np
+⋅⋅⋅+

=
1

α
α , k,,1 ⋅⋅⋅=α                   (12) 

 
where pα is the prior probability of collectivity Gα, and nα 

is the number training samples belonged to collectivity 
Gα. 
 
2.5 Evaluation of discriminant criterion 

To estimate the reliability of discriminant criterion 
above, the re-substitution method was used to calculate 
the mis-discrimination rate [16]. All the training samples 
were regarded as the new samples and re-substituted into 
the discriminant criterions. The rate of misjudgment can 
be evaluated as the value of the number of 
mis-discrimination samples divided by the number of all 
samples. 
 
3 BDA model for identification of goaf risky 
 
3.1 Flow chart of building model 

The process to build the Bayes discriminant model 
can be divided into five steps: 1) determining the impact 
factors influencing the goaf risky; 2) dividing risky 
levels of goafs; 3) building the BDA model by using 
training samples; 4) testing of BDA model; 5) 
application of BDA model. The flow chart of building 
model is shown in Fig. 1. 
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Fig. 1 Flow chart of building BDA model 
 
3.2 Risky level dipartition of goaf 

The characteristics of goaf disaster area and related 
studies show that the rock movement will not develop 
normally to the surface when the ore body buried deeper 
than 4 to 5 times the mining area. When the development 
of rock movement reached the surface, caving zone, 
fracture zone and bending zone (referred to as the "three 
zones") will form in upper rock mass of goaf (shown in 
Fig. 2). With the expansion of the scope of mining, the 
fracture zone and range of three zones will gradually 
change. When only the fracture zone occurs, the risk is 
low. When the fracture zone gradually develops, bending 
zone may occur, but the risk is also low; with the further 
development, the roof rock at footwall of fracture zone 
will collapse, which may cause a underground harm and 
can be regarded as a greater hazard. When caving zone 
appears and gradually expands, there are significant 
hazards. The serious risk of disaster is affected by many 
factors. Generally, caving zone and fracture zone have 
been extremely developed and goaf spans the space, 
resulting in complete collapse of bending zone, which 
will bring a great harm to the underground and surface of 
goaf. 

Therefore, according to the severity of the 
dangerous consequences scale (Table 1), the instability 
of the goaf is divided into four risk levels: the first grade 
I (normal risk hazard), grade II (greater harm hazard), 
grade III (major hazard) and grade IV (large damage 

 

 
Fig. 2 Schematic diagrams of goaf initial state (a) and goaf 
hazard state (b) 
  
Table 1 Scale of risky of serious consequences 

Level Risky Consequence characteristic 

I Negligible Personnel no damage, no loss of system

II Critical edge Less staff damage, less loss of system

III Dangerous Serious injury, significant damage system

IV Disastrous Death, retirement system 

 
hazard), which means that the collectivity number of 
Bayesian discriminant analysis model has four. 
 
3.3 Determine of impact factors influencing goaf risky 

The risky of goaf is influenced by many factors, 
which can be divided into several aspects, including rock 
properties of goaf, geological conditions, exploitation 
technical factors and treatment methods. After 
comprehensive analysis, nine specific indexes 
influencing the stability of goaf risky (shown in Table 2) 
[17], uniaxial compressive strength of rock (X1), elastic 
modulus of rock (X2), rock quality designation (X3),  
area ratio of pillar (X4), ratio of width to height of pillar 
(X5), depth of ore body (X6), volume of goaf (X7), dip of 
ore body (X8) and area of goaf (X9), were selected as 
discriminant indexes. 
 
3.4 Training of learning samples and modeling 

From Ref. [17], the actual data of 40 goafs were 
used as training samples to establish a Bayes analysis 
model to identify the risky of goaf. The BDA model is 
shown in Fig. 3. 
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Table 2 Original data of 40 training goaf samples 
No. X1/MPa X2/MPa X3/% X4 X5 X6/m X7/104 m3 X8/(°) X9/104 m2 Risky level
1 130 35000 64 0.15 2.4 385 484.5 80 16.2 II 
2 90 22000 55 0.13 1.8 260 178.9 85 8.0 IV 
3 115 23000 70 0.16 1.9 216 128.0 78 3.7 III 
4 124 26000 62 0.15 1.7 300 181.3 82 5.5 IV 
5 113 27000 58 0.22 1.9 230 67.2 75 6.1 II 
6 141 21000 62 0.23 2.0 300 115.0 82 4.3 II 
7 146 28000 65 0.18 2.4 475 191.0 75 3.4 III 
8 135 32000 66 0.17 2.3 250 170.9 80 5.8 III 
9 108 29000 64 0.15 1.7 100 88.3 71 6.2 III 

10 45 11000 48 0.12 1.2 200 29.2 12 7.3 IV 
11 53 14000 56 0.14 1.6 120 30.5 13 5.0 III 
12 58 17000 60 0.18 2.3 50 108.4 15 12.3 II 
13 190 36000 82 0.24 2.2 60 17.5 21 5.7 II 
14 172 34000 84 0.22 2.0 30 28.0 18 13.2 III 
15 164 39000 86 0.23 1.8 20 37.0 5 15.0 II 
16 155 38000 80 0.20 1.6 20 23.4 23 2.8 IV 
17 181 35000 85 0.21 1.9 50 10.5 20 2.2 II 
18 35 18000 46 0.18 1.5 120 85.5 19 9.4 IV 
19 147 34000 75 0.26 0.8 80 64.0 58 12.0 II 
20 240 39000 81 0.25 0.9 65 86.4 22 7.2 II 
21 270 35000 77 0.23 1.0 60 46.3 18 3.7 III 
22 135 18000 55 0.17 0.7 80 27.4 48 4.6 II 
23 166 26000 65 0.12 0.4 50 78.3 65 5.8 IV 
24 174 28000 68 0.15 0.5 90 196.0 70 5.4 III 
25 65 15000 65 0.24 1.5 75 12.6 10 4.3 II 
26 240 37000 76 0.21 1.2 60 153.5 15 26.7 IV 
27 58 17000 40 0.23 1.6 65 371.0 12 35.2 III 
28 60 20000 56 0.22 1.7 70 59.2 14 29.6 II 
29 85 21000 60 0.27 1.6 75 60.0 15 12.0 II 
30 80 22000 65 0.23 1.5 72 80.5 16 17.0 III 
31 110 25000 66 0.29 2.7 300 41.5 30 4.5 I 
32 140 28000 70 0.30 2.9 240 70.8 20 16.8 I 
33 170 36000 78 0.32 3.0 150 35.0 40 8.2 I 
34 90 22000 54 0.33 3.4 60 47.6 85 3.6 I 
35 95 24000 58 0.34 2.9 190 48.0 15 7.5 I 
36 100 28000 61 0.31 2.8 70 54.0 25 9.0 I 
37 180 39000 75 0.29 2.9 85 60.5 38 12.2 I 
38 270 42000 80 0.35 3.1 120 88.0 65 18.5 I 
39 250 47000 85 0.32 4.4 140 132.0 25 19.5 I 
40 310 55000 88 0.31 3.2 160 121.0 70 8.8 I 

 

 
Fig. 3 Bayes discriminant model diagram 

3.5 Data normalized 
In the process of building BDA model, in order to 

make the model training more effective, the original 
sample data were normalized and the model input data 
will be in [0, 1] interval. For quantitative data, using the 
following formula: 
 

minmax

min

xx
xxx
−

−
=                              (14) 

 
where x  is normalized sample data; x is original 
sample data; xmin and xmax are the minimum and 
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maximum values of original data, respectively. In 
addition, there is no conversion for pillar area value and 
rock quality indicators can be directly divided by 100. 
Normalized sample data are shown in Table 3. 
 
3.6 Test of BDA model 

The prior probability is allocated by the proportion 

of training samples, and then p1=10/40=0.250, 
p2=13/40=0.325, p3=10/40=0.250 and p4=7/40=0.175.  
The normalized data are input into BDA model and 
discriminant functions can be obtained. It can be seen 
from Table 1 that the forecasting risky level of goaf is the 
same as the actual status except sample No. 30, and   
the ratio of mis-distinguish is 1/40=0.025. It can be  

 
Table 3 Input data of 40 training goaf samples and discriminant results 

No. X1 X 2 X3 X4 X5 X6 X7 X8 X9 BDA level
1 0.345 0.545 0.64 0.14 0.500 0.802 1.000 0.938 0.364 II 
2 0.200 0.250 0.55 0.13 0.350 0.527 0.355 1.000 0.182 IV 
3 0.291 0.273 0.70 0.16 0.375 0.431 0.248 0.913 0.076 III 
4 0.324 0.341 0.62 0.19 0.325 0.615 0.360 0.963 0.100 IV 
5 0.284 0.364 0.58 0.22 0.375 0.462 0.120 0.875 0.118 II 
6 0.385 0.227 0.62 0.23 0.400 0.615 0.220 0.963 0.064 II 
7 0.404 0.386 0.65 0.18 0.500 1.000 0.381 0.875 0.036 III 
8 0.364 0.477 0.66 0.17 0.475 0.505 0.338 0.938 0.109 III 
9 0.265 0.409 0.64 0.15 0.325 0.176 0.164 0.825 0.152 III 

10 0.036 0.000 0.48 0.12 0.200 0.396 0.039 0.088 0.155 IV 
11 0.065 0.068 0.56 0.14 0.300 0.220 0.042 0.100 0.085 III 
12 0.084 0.136 0.60 0.15 0.475 0.066 0.207 0.125 0.306 II 
13 0.564 0.568 0.82 0.24 0.450 0.088 0.015 0.200 0.106 II 
14 0.498 0.523 0.84 0.22 0.400 0.022 0.037 0.163 0.333 III 
15 0.469 0.636 0.86 0.23 0.350 0.000 0.056 0.000 0.388 II 
16 0.436 0.614 0.80 0.20 0.300 0.000 0.027 0.225 0.012 IV 
17 0.531 0.545 0.85 0.21 0.375 0.066 0.000 0.188 0.000 II 
18 0.000 0.159 0.46 0.18 0.275 0.220 0.158 0.175 0.218 IV 
19 0.407 0.523 0.75 0.26 0.100 0.132 0.113 0.663 0.297 II 
20 0.745 0.636 0.81 0.25 0.125 0.099 0.160 0.212 0.152 II 
21 0.855 0.545 0.77 0.23 0.150 0.088 0.076 0.163 0.045 III 
22 0.364 0.159 0.55 0.17 0.075 0.132 0.036 0.538 0.073 II 
23 0.476 0.341 0.65 0.12 0.000 0.066 0.143 0.750 0.109 IV 
24 0.505 0.386 0.68 0.15 0.025 0.154 0.391 0.813 0.097 III 
25 0.109 0.091 0.65 0.24 0.275 0.121 0.004 0.063 0.064 II 
26 0.745 0.591 0.76 0.21 0.200 0.088 0.302 0.125 0.742 IV 
27 0.084 0.136 0.40 0.23 0.300 0.099 0.761 0.088 1.000 III 
28 0.091 0.205 0.56 0.22 0.325 0.110 0.103 0.113 0.830 II 
29 0.182 0.227 0.60 0.27 0.300 0.121 0.104 0.125 0.297 II 
30 0.164 0.250 0.65 0.23 0.275 0.114 0.148 0.168 0.448 II 
31 0.273 0.318 0.66 0.29 0.575 0.615 0.065 0.313 0.070 I 
32 0.382 0.386 0.70 0.30 0.625 0.484 0.127 0.188 0.442 I 
33 0.491 0.568 0.78 0.32 0.650 0.286 0.052 0.438 0.182 I 
34 0.200 0.250 0.54 0.33 0.750 0.088 0.078 1.000 0.042 I 
35 0.218 0.295 0.58 0.34 0.625 0.374 0.079 0.125 0.161 I 
36 0.236 0.386 0.61 0.31 0.600 0.110 0.092 0.250 0.206 I 
37 0.527 0.636 0.75 0.29 0.625 0.143 0.104 0.413 0.303 I 
38 0.855 0.705 0.80 0.35 0.675 0.220 0.164 0.688 0.494 I 
39 0.782 0.818 0.85 0.32 1.000 0.264 0.256 0.250 0.390 I 
40 1.000 1.000 0.88 0.31 0.700 0.308 0.233 0.813 0.304 I  
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concluded that the BDA model can be applied to 
identifying the goaf risky. 
 
4 Actual engineering application of BDA 

model 
 

Yaogangxian tungsten in Hunan province, China, is 
an old metal mine with more than mining 90 years, and 
there are a large number of goafs. The risky of goaf in 
Yaogangxian Tungsten Mine [4] was identified by using 
this BDA model above. The original data of mine goaf 
and discriminant results are shown in Table 4. The result 
of BDA model is identical with actual level, which also 
is the same with the result of ANN method [17]. It can be 
concluded that the BDA model can be applied in 
practical mine engineering to identifying the risky level. 
In fact, some goafs in the upper part of the ore has 
collapsed, making surface crack and deform. However, 
there is not catastrophic phenomenon. In the ore stope 
and tunnel of lower part, the phenomenon of partial roof 
collapse has occurred accidentally. 

Therefore, the actual degree of danger is the level II, 
which is identical with the BDA model identification 
results. Table 5 also shows the results of 16 artificial 
neural networks (Artificial neural networks, referred to 
as ANN), which is also level II. Compared with artificial 
neural network method, the overall prior probability of 
every collectivity was fully considered in Bayesian 
discriminant analysis model. The Bayesian discriminant 
model has a fixed structure and the training process is 
simple and training is quick. 

 
Table 4 Original data of Yaogangxian Tungsten Mine goaf 

X1/MPa X2/MPa X3/% X4 X5 

120 32000 70 0.28 4.2 

X6/m X7/104 m3 X8/(°) X9/104 m2 Risky level

50 468.0 75 18.0 II 

 
Table 5 Discriminant results of Yaogangxian Tungsten Mine 
goaf 

X1 X 2 X3 X4 X5 X6 X7 X8 X9 
BDA
level

ANN
level

0.309 0.477 0.70 0.28 0.950 0.066 0.965 0.875 0.479 II II

 
5 Conclusions 
 

1) Based on the Bayes discriminant analysis theory 
and actual characteristics of goaf risky, a Bayes 
discriminant analysis (BDA) model for instability 
identification of goaf risky was presented. 

2) The results show that this discriminant analysis 
model has high precision and can be used in practical 

engineering. Compared with the other prediction 
methods, BDA model has a stable structure and the 
discriminant process is very simple and convenient. 

3) It is the preliminary attempt that Bayes 
discriminant analysis theory is applied to analysis of the 
identification of goaf risky in mines. In the future work, 
it is necessary to conduct depth-study in selecting the 
study sample and discriminant genes, and then enhance 
the practicality of BDA model. 
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复杂采空区危险辨识的贝叶斯判别方法及应用 
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摘  要:提出了复杂采空区危险程度辨识的贝叶斯判别方法。基于多元判别分析理论，将贝叶斯判别方法应用于

金属矿山采空区危险程度的预测判别问题中，建立了相应的贝叶斯判别分析模型。该模型选用岩石单轴抗压强度、

岩石弹性模量、岩石质量指标、矿柱面积比率、矿柱宽高比、矿体埋藏深度、采空区体积、矿体倾角和采空区面

积 9 项指标作为判别因子，将采空区的危险性等级分为 4 级；以 40 个采空区实测数据作为学习样本进行训练，

建立相应判别函数对待判样本进行分类。研究结果表明，贝叶斯判别模型的学习精度很高，回判估计的误判率为

0.025。利用学习后的模型对某金属矿山采空区实例进行了稳定性判别，判别结果和实际情况相符。 

关键词:采空区；危险辨识；贝叶斯判别分析；金属矿山 
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