

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 22(2012) 111-116

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Effect of MoSi₂ content on dielectric and mechanical properties of MoSi₂/Al₂O₃ composite coatings

WU Zhi-hong, ZHOU Wan-cheng, LUO Fa, ZHU Dong-mei

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China

Received 27 December 2010; accepted 19 September 2011

Abstract: Molybdenum disilicide (MoSi₂) sheath and aluminum oxide (Al₂O₃) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of $MoSi_2/Al_2O_3$ mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the $MoSi_2$ content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa·m^{1/2} then decline to 310 MPa and 4.67 MPa·m^{1/2}, respectively. The dielectric loss tangent increases with increasing $MoSi_2$ content, and the real part of permittivity decreases conversely over the frequency range of 8.2–12.4 GHz. These effects are due to the agglomeration of early molten $MoSi_2$ particles and the increase of the electrical conductivity with increasing $MoSi_2$ content.

Key words: MoSi₂/Al₂O₃ composite coating; atmospheric plasma spraying; mechanical properties; dielectric properties

1 Introduction

Radar absorbing materials (RAMs) are widely used in commercial and military applications. RAMs are made of compounds with high loss energy, which enables them to absorb the incident radiation in synchronized frequencies and dissipate it as heat [1]. At present, the most cost effective means of shielding radar radiation, controlling electromagnetic interference and dissipating electrostatic charge is to use magnetic or dielectric fillers [2] or intrinsically conducting polymers [3, 4]. materials with different Composite types of ferromagnetic or ferroelectric fillers have attracted much attention. MoSi₂ has potential applications varying from matrix material to reinforcing second phase for various high temperature structural applications due to its high modulus of elasticity, high melting point (2030 °C), superior oxidation resistance [5, 6], relatively low density (6.31 g/cm³), reasonably good electrical and thermal conductance (52 W/(mK)) [7, 8]. On the other hand, Al₂O₃ also has good oxidation and corrosion resistance because of its α -Al₂O₃ main crystalline phase, high melting point (2050 °C), and low density (3.7 g/cm³). As the typical representative of low dielectric permittivity microwave dielectric ceramic, Al₂O₃ has perfect dielectric permittivity property, especially its low dielectric loss. ALFORD and PENN [9] and HUANG et al [10] reported the dielectric properties of the single phase Al₂O₃. When conductive inter-metallic compound MoSi₂ particles are introduced into Al₂O₃ matrix, not only the mechanical properties of Al₂O₃ composites can be enhanced, but also the dielectric loss and dielectric permittivity of the composites can be modified. Consequently, it is possible to provide the MoSi₂/Al₂O₃ composites with electromagnetic attenuation, but little attention is paid to its microwave absorbing properties. Because coating is the general form of RAM, efforts were focused on the preparation and dielectric properties of the MoSi₂/Al₂O₃ coatings by APS in this work. The complex permittivity, physical mechanical properties and possible mechanisms of the sprayed coatings were reported and discussed.

2 Experimental

Raw powders with different $MoSi_2/Al_2O_3$ ratios (alumina produced by Hengjitianli Chemical Industry Co., Ltd. of Zibo, Shandong, China, $Al_2O_3 \ge 99.99\%$, average particle size of 40 µm; molybdenum disilicide

Foundation item: Project (50572090) supported by the National Natural Science Foundation of China; Project (KP200901) supported by the States Key Laboratory of Solidification Processing in NWPU, China

Corresponding author: WU Zhi-hong; Tel: +86-29-82202789, E-mail: wuzhihong@msn.com DOI: 10.1016/S1003-6326(11)61148-5

produced by Dengfeng Electric Heating Industry Co., Ltd. of Henan, China, average particle size of 0.5 μ m) were mixed in water with the addition of the organic binder system (poly vinyl alcohol, poly ethylene glycol, surfactant: Zschimmer & Schwartz Dolpapix CE64). The alumina mass fractions in these samples were 90%, 85%, 75%, 65% and 55%, marked as M1, M2, M3, M4 and M5, respectively.

After it was spray-dried, the composite powders of Al_2O_3 and $MoSi_2$ were obtained. Granularity analysis shows that the diameter of the composite powders is 45–75 µm. SEM photographs indicate that the dried powders have a MoSi₂-rich sheath and Al_2O_3 -rich core. Figure 1 shows the typical microstructures of the composites with 15% (mass fraction) MoSi₂ after spray drying. Table 1 summarizes the compositions of slurries for spray drying.

Air plasma spray depositions of the processed powders were made on rough-surfaced graphite sheet substrates in order to easily get free-standing coatings. Plasma spraying was done with a non-transferred arc plasma torch operated at different power levels. The powders were fed at 16 g/min using argon as carrier gas. The plasma spraying parameters are listed in Table 2.

The density, microstructure, mechanical and dielectric properties were determined all on the free-

Fig. 1 SEM images of composite powders M2 after spray drying (a) and typical partied (b)

Table 1 Physical parameters of raw materials					
Raw materials	Particle size/ µm	Density/ (g·cm ⁻³)	Elastic modulus/GPa		
Al ₂ O ₃	40	3.95	350		
MoSi ₂	0.5	6.24	440		
Raw materials	Electric conductivity/ (µS·cm ⁻¹)	Linear expansion coefficient/ (10 ⁻⁶ K ⁻¹)	Melting point/°C		
Al ₂ O ₃	6	5.6	2050		
MoSi ₂	_	7-8	2030		

Cable 71	have time more	mantara of mlaar	A ALL TOTAL
ите л с	петанно пата	meners or masi	
	/Doraune Dara	motors or plast	na opravnic

Operating Power/kW	Plasma gas flow rate/ $(L \cdot min^{-1})$	Powder
20	20	Molybdenum disilicide and aluminum
Powder size/µm	Powder transporting gas flow rates/(L·min ⁻¹)	Distance between torch and substrate/mm
40-80	3	85-90

standing coatings. The densities were measured by Archimedes' method. The immersing liquid for density measurements was water, relative densities were calculated based on the rule of mixture, the bulk densities of Al_2O_3 and $MoSi_2$ were 4.0 and 6.2 g/cm³, respectively. The flexure strength was measured with the three-point bending method. The fracture toughness was calculated with the indentation strength method.

Surface morphology was carried out by scanning electron microscopy (JSM-5610LV). The phase compositions were analyzed by full-automatic X-ray diffractometer (XRD). The dielectric parameters were carried out in the frequency range of 8.2–12.4 GHz by a network analyzer (Agilent Technology E8362B), which requires specimens are in dimensions of 10.16 mm× 22.86 mm×2 mm.

3 Results and discussion

3.1 Physical mechanical properties

The density and flexure strength of the free-standing coatings with different $MoSi_2$ contents are shown in Fig 2. For comparison, samples with no $MoSi_2$ are also detected.

Figure 2 indicates that the relative densities of the $MoSi_2/Al_2O_3$ coatings decrease dramatically compared with the pure Al_2O_3 coating, which means that the addition of $MoSi_2$ into Al_2O_3 is detrimental to the sintering of the coatings. But with further increasing $MoSi_2$ content, the relative density of the $MoSi_2/Al_2O_3$ coatings increases gradually. It can be ascribed to the lower melting point and the higher thermal coefficient of

MoSi₂ than those of Al₂O₃, which improves the molten state of the dried grains during flight dwell and enhances the densities of the coatings.

Fig. 2 Mechanical properties of MoSi₂/Al₂O₃ composition

The flexure strength and fracture toughness increase with the increase of MoSi₂ when the content is less than 35%. The reasons of the flexure strength variation with MoSi₂ content are summarized as follows. MoSi₂ particles can impede the growth of Al₂O₃ grains. High density of the coatings results from better melting state of sprayed particles; the grain-boundary energy and interfacial energy can be improved obviously by adding MoSi₂, and as the content increases, the effect becomes more significant [11]. The fracture toughness increase with MoSi₂ content is resulted from finer Al₂O₃ grains and microcracks between Al₂O₃ and MoSi₂ grains due to their different thermal expansion coefficients [12]. When the MoSi₂ content reaches 45%, the flexure strength and fracture toughness all decline, because the effect of Al₂O₃ matrix is weakened.

3.2 Phase of composite coatings

The XRD patterns of the free-standing coatings are shown in Fig. 3.

Fig. 3 XRD patterns of MoSi₂/Al₂O₃ composite with different MoSi₂ contents

It is seen that the dominating phases are $MoSi_2$ and Al_2O_3 . In addition, new AlN phase is found. This is because nitrogen (N₂) is used as shielding gas and reaction gas during plasma spraying process. It reacts with Al_2O_3 on the surface of graphite substrate to form AlN. The possible reaction to produce AlN is [13, 14]

$$Al_2O_3 + N_2 + 3C = 2AlN + 3CO$$

In this case, it can be found that AlN is produced by Al_2O_3 , C (from the graphite substrate) and N_2 (spraying atmosphere). Considering the small amount of AlN, the effect of this third phase on the dielectric performance of the composite studied in this work should be negligible.

3.3 Microstructure of composite coating

Figure 4 shows the typical microstructures of the composites with 10%, 15% and 25% (mass fraction) $MoSi_2$ after polishing the surface of the samples.

Fig. 4 SEM images of coatings after APS with different MoSi₂ contents: (a) M1; (b) M2; (c) M3

114

From Fig. 4, it is apparent that the composites contain some black matrix materials and some speckled black phases. The XPS X-ray photoelectron spectroscopy result indicates that the black phase contains 65.3% Si (molar fraction) and 32.5% Mo. Hence, it is molybdenum disilicide. It can be found from Fig. 4 that MoSi₂ particles are homogeneously distributed in the Al₂O₃ matrix and along with the increase of the MoSi₂ content, this distribution is more apparent. But at the same time, there are some conglobation and adhesion of MoSi₂ particles, which is mainly due to two aspects. On one hand, some of the MoSi₂ particles on the surface of Al₂O₃ particles can congregate during spray drying granulation. On the other hand, in the plasma spray process, the MoSi₂ particles melt more completely than Al₂O₃ particles. The molten MoSi₂ is inclined to form partial clustering by capillary forces.

3.4 Dielectric properties

The real parts of permittivity (ε') and dielectric loss tangent properties $(\tan \delta)$ of the MoSi₂/Al₂O₃ coatings sprayed using different amounts of MoSi₂ powders are shown in Figs. 5(a) and (b), respectively. From Fig. 5(a), it can be seen that the ε' of the MoSi₂/Al₂O₃ composites decreases with the increase of MoSi2 content across the whole frequency range. The ε' presents an obvious decrease from 8-11.3 to 5-8.4 in the tested frequency range when MoSi₂ content increases from 10% to 45%. With the same $MoSi_2$ content, ε' also slightly decreases with increasing frequency which indicates that the composite material has some frequency dispersion. It is generally known that ε' reflects the capability of store charge of materials. According to the principle of equivalent circuit, the real parts of MoSi₂/Al₂O₃ permittivity vary directly with the surface area of MoSi₂ particles. As mentioned before, increased MoSi2 content might promote the clustering of MoSi₂ particles in the MoSi₂/Al₂O₃ composites (as shown in Fig. 4), expanding the MoSi₂ particles surface. When the content of MoSi₂ increases from 10% to 45%, the specific surface area decreases, the real parts of permittivity descend. From Fig. 5(b), it can be seen that the value of loss factor in MoSi₂/Al₂O₃ composites increases with increasing MoSi₂. This is because the dielectric loss of MoSi₂/Al₂O₃ composite relates to its electrical conductivity. As known, MoSi₂ has high electrical conductivity. When MoSi₂ particles are dispersed in Al₂O₃ matrix, a MoSi₂ conductive network can be formed [15]. When the interparticle distance is shorter than the gap width that quantum tunneling effect permits, conductive networks form. For composites blending with dispersed spherical particles, MARGOLINA and WU [16] assumed a simple cubic lattice to calculate the surface-to-surface interparticle distance as:

$$\delta = D \left[\left(\frac{\pi}{6\varphi} \right)^{1/3} - 1 \right] \tag{1}$$

where δ is the average surface-to-surface interparticle distance; D is the particle diameter and φ is the volume fraction of particles. Equation (1) shows that the δ of the MoSi₂ particles is dependent on the volume fraction as the particle diameter is constant. This can be observed in the SEM images (Fig. 4) of the composites with different MoSi₂ contents. The distances between the MoSi₂ particles are shortened by increasing MoSi₂ content. At the same time, the MoSi₂ agglomerations also increase due to the increasing possibility of the contact between MoSi₂ particles as the proportion of MoSi₂ increases. The schematic of MoSi₂/Al₂O₃ composites with different MoSi₂ contents is shown in Fig. 6. The average surface-to-surface interparticle distance of filled particles in high MoSi₂ content composites is relatively short. This means that the high MoSi₂ content is more likely to reach the critical surface-to-surface interparticle distance (i.e. the electron hopping gap width) based on Eq. (1). The MoSi₂ particles in high MoSi₂ content composites are more prone to form conductive networks. Therefore, with increasing MoSi₂ content, the electrical conductivity and $\tan \delta$ both increase.

Fig. 5 Complex permittivity (a) and dielectric loss tangent (b) vs frequency of different MoSi₂ composite coatings

The real permittivity and dielectric loss tangent value show an obvious fluctuation between 10 and 10.5 GHz among the lines λ_1 and λ_2 , as shown in Fig. 5. This phenomenon can be interpreted as the correlated relationship between the real permittivity (polarization) and imaginary permittivity (electric loss), i.e., energy storage (capacitor) \iff energy dissipation (resistor). Similar results were reported in the other filled composites [17, 18].

Fig. 6 Schematic diagrams of different $MoSi_2/Al_2O_3$ composites: (a) Low content of $MoSi_2$; (b) High content of $MOSi_2$

4 Conclusions

1) The spray drying method can effectively let $MoSi_2$ cover the surface of the Al_2O_3 core particles and isolate its contact with each other.

2) The $MoSi_2$ particles are homogeneously distributed in the Al_2O_3 matrix, but the appearance of some conglobation occurs with increasing $MoSi_2$ contents. These are due to the congregate of $MoSi_2$ particles on the surface of Al_2O_3 core particles during spray drying granulation and partial clustering by capillary forces during APS.

3) The decrease of the real parts (ϵ') of permittivity is mainly caused by the agglomeration of early molten MoSi₂ particles, and the increase of the dielectric loss tangent properties (tan δ) of the MoSi₂/Al₂O₃ coatings is due to the increase of the electrical conductivity with increasing MoSi₂ content.

4) The mechanical properties can be tailored by choosing a suitable $MoSi_2$ content. $MoSi_2/Al_2O_3$ composite is a promising material in both the electromagnetic absorption characteristics and the load-bearing capacity aspects.

References

 FAN Z J, LUO G H, ZHANG Z F, ZHOU L, WEI F. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites [J]. Mater Sci Eng B, 2006, 132(1-2): 85-89.

- [2] MAEDA T, SUGIMOTO S, KAGOTANI T, TEZUKA N, INOMATA K. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth-iron-boron compounds [J]. J Magn Magn Mater, 2004, 281(2-3): 195–205.
- [3] SOTO-OVIEDO M A, ARAÚJO O A, FAEZ R, REZENDE M C, de PAOLI M A. Antistatic coating and electro-magnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber [J]. Synthetic Met, 2006, 156(18-20): 1249-1255.
- [4] WOJKIEWICZ J L, FAUVEAUX S, MIANE J L. Electromagnetic shielding properties of polyaniline composites [J]. Synthetic Met, 2003, 135–136: 127–128.
- JENG Y L, LAVERNIA E J. Processing of molybdenum disilicide [J]. J Mater Sci, 1994, 29(10): 2557–2571.
- [6] YAN Jian-hui, ZHANG Hou-an, XU Hong-mei, WU Hai-jiang, TANG Si-wen. Preparation of MoSi₂ powder used for plasma-spraying and its melting characteristics in plasma arc [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4): 836–842. (in Chinese)
- [7] LIN W Y, HSU J Y, SPEYER R F. Stability of molybdenum disilicide in combustion gak environments [J]. J Am Ceram Soc, 1994, 77(5): 1162–1168.
- [8] PETROVIC J J. Mechanical behavior of MoSi₂ and MoSi₂ composites [J]. Mater Sci Eng A, 1995, 192–193(Part 1): 31–37.
- [9] ALFORD N M, PENN S J. Sintered alumina with low dielectric loss [J]. J Appl Phys, 1996, 80(10): 5895–5898.
- [10] HUANG C L, WANG J J, HUANG C Y. Sintering behavior and microwave dielectric properties of nano alpha-alumina [J]. Mater Lett, 2005, 59(28): 3746–3749.
- [11] NEWMAN A, SAMPATH S, HERMAN H. Processing and properties of MoSi₂–SiC and MoSi₂–Al₂O₃ [J]. Mater Sci Eng A, 1999, 261(1–2): 252–260.
- [12] Aikin R M. Structure and properties of in situ reinforced MoSi₂ [C]//Wachtman J B. Proceedings of the 15th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 1643-1655.
- [13] LI Z J, PAN X L, SUN W M, QU J H, WANG F. Production and character of Al₃O₃N nanowires [J]. Acta Phys Sin-ch Ed, 2005(1): 450–453.
- [14] CAO Zhong-liang, WANG Zhen-yun. The manual of inorganic chemistry reaction equations [M]. Changsha: Proceedings of the Fourth Inte Science Press, 1985: 150–151. (in Chinese)
- [15] HUANG Z B, ZHOU W C, TANG X F, ZHU J K. Effects of milling methods on the dielectric and the mechanical properties of hot-pressed sintered MoSi₂/Al₂O₃ composites [J]. J Alloy Compd 2011, 509(5): 1920–1923.
- [16] MARGOLINA A, WU S H. Percolation model for brittle-tough transition in nylon/rubber blends [J]. Polymer, 1988, 29(12): 2170-2173.
- [17] WATTS P C P, PONNAMPALAM D R, HSU W K, BARNES A, CHAMBERS B. The complex permittivity of multi-walled carbon nanotube- polystyrene composite films in X-band [J]. Chem Phys Lett, 2003, 378(5–6): 609–614.
- [18] RAMIREZ A P, HADDON R C, ZHOU O, FLEMING R M, ZHANG J, McCLURE S M, SMALLEY R E. Magnetic susceptibility of molecular carbon: nanotubes and fullerite [J]. Science, 1994, 265(5168): 84–86.

MoSi₂含量对 MoSi₂/Al₂O₃复合涂层介电与力学性能的影响

武志红,周万城,罗发,朱冬梅

西北工业大学 凝固技术国家重点实验室, 西安 710072

摘 要:通过喷雾干燥法制备 MoSi₂ 包覆 Al₂O₃ 的壳核结构混合粉,利用该混合粉以等离子喷涂技术制备 MoSi₂/Al₂O₃ 复合涂层材料。研究 MoSi₂/Al₂O₃ 质量比涂层材料的力学和介电性能的影响。结果表明:随着 MoSi₂ 含量从 0 增加到 45%,复合材料的抗弯强度和断裂韧性分别从 198 MPa 和 3.05 MPa·m^{1/2} 增加到 324 MPa 和 4.82 MPa·m^{1/2},随后又降到 310 MPa 和 4.67 MPa·m^{1/2}。在 8.2–12.4 GHz 微波频率波段内,随着 MoSi₂ 含量的增加,复合材料的介电损耗增加,而介电常数的实部却呈减小趋势。这主要是由于 MoSi₂颗粒熔化后的凝聚及导电网络结构的形成导致电导率的增加引起的。

关键词: MoSi₂/Al₂O₃复合涂层; 大气等离子喷涂; 物理力学性能; 介电性能

(Edited by FANG Jing-hua)