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Abstract: The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis
(FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected
from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the
pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling,
testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were
investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in
various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models.
The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of
models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the
correct classification rate Py by re-substitution method and P, by cross validation method. The results show that the SVMs approach
has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.
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1 Introduction

Pillars are key structural columns that are
commonly applied in underground mining. They are
usually made of in situ intact ores and do not have
additional reinforcements. Their main function is to
provide temporary or permanently support for the weight
of overburden material between adjacent underground
openings and ore ceiling of drilling rooms during
excavation and mining [1—6]. As mining goes deeper and
deeper, pillar failure becomes more and more frequent
and critical due to the remarkable increase in ambient
stresses. Because of their significance in safe and
economical extraction of underground ores, mine pillars
and their design have been investigated by a number of
researchers and engineers [1, 6].

Over the past decades, deterministic (empirical,
statistical or analytical) methods for the estimation of
mine pillar stability have been developed [4-5, 7]. Pillar

design is typically carried out by estimating the strength
and the stress of the pillars, and then sizing the pillars so
that an adequate margin exists between the expected
pillar strength and stress. Because the uniaxial
compressive strength of the rock plays an important role
in pillar instability, the stability of a pillar can be
evaluated by calculating a factor of safety (FoS), which
is the ratio of the average strength (S) to the average
stress (o) in the pillar (FoS= S/o,) [6]. Theoretically, the
FoS value greater than 1 means that the pillar is stable,
while the FoS value lower than 1 means unstable [7].
Sometimes, these methods, however, are questionable
because failures in pillars did occur even though the
failed pillars had been considered stable, i.e., FoS >1 [6].
Besides this, due to the nonlinear behaviour of rock
pillars at the high stress levels associated with deep
mining conditions, the failure mechanism is not
considered explicitly in these methods. And empirical
methods are based on interpretation of available
databases collected from ongoing or completed projects,
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it is therefore difficult to generalize the obtained results
beyond the scope of the original site characteristics [8].
actual field conditions, several
affect the

underground excavations including in situ stress, rock

Moreover, under

important  factors pillar stability of
mass properties, site geology, mining method, opening
spans, and time, since excavation has no complete
theoretical solution for its prediction [8—11]. In such
situations, a wide range of statistical and numerical
solutions, software computing methods and machine
learning models like currently artificial intelligence (Al),
have been developed and applied in this field to estimate
pillar stability for underground mines, and the
researchers have made admirable efforts over the pillar
design and layout applied in rocks. GRIFFITHS et al
[12] presented a probabilistic analysis of underground
pillar stability. HUTCHINSON et al [13] recommended
the use of simulation methods for considerations of
crown pillar stability risk assessment in mine planning.
DENG et al [6] proposed a pillar design based on Monte
Carlo simulation by combining finite element methods,
neural networks and reliability analysis. CAUVIN et al
[7] used probabilistic method to assess uncertainties in
mining pillar stability. GRIFFITHS et al [14] combined
random field theory with an elasto-plastic finite element
algorithm in a Monte Carlo framework to estimate the
stability of pillars. PALEI and DAS [15] presented a
logistic classification model for prediction of roof fall
risks in bord and pillar workings in coal mines.
JAISWAL and SHRIVASTVA [16] and MOHAN et al
[10] established a three-dimensional finite element
model for estimation of coal-mass pillar strength through
calibration of a numerical model. ELMO and STEAD [9]
investigated the use of the hybrid FEM/DEM code
ELFEN in studying the failure modes of jointed pillars.
MONIJEZI et al [17] developed a multilayer perceptron
neural network model methodology to predict the pillar
stress concentration in the bord and pillar method and
compared the results with BEM numerical solution.
Fisher discriminant analysis (FDA) is a well-known
classical linear method for classifying two or multiple
classes and it has been shown to be the optimal linear
diagnosis [18—19],
prediction [20] and reliability assessment for mine

techniques for fault rockburst
ventilation system safety [21]. Thus, FDA will be used as
a representative linear technique for comparison with
nonlinear technique. Among Al tools, support vector
machine (SVM) is an efficient ML technique derived
from statistical learning theory by VAPNIK [22]. As a
representative nonlinear technique, SVM will be used
since it has been shown to be an effective technique for
classifying nonlinear dataset [18—19, 22-25]. It is

therefore motivating to investigate the capability of FDA,
and SVM in pillar stability for underground mines
prediction.

2 Calculation theory of Fisher discriminant
analysis

The basic idea of FDA [18-21] is an optimal

dimensionality reduction technique in terms of

maximizing the separability of these classes. It
determines a set of projection vectors that maximizes the
scatter between the classes while minimizes the scatter
within each class. A short mathematical description is
introduced as follows.

Define n as the number of observations, m as the
number of measurement variables, p as the number of
classes, and #n; as the number of observations in the jth
class. Represent the vector of measurement variables for
the ith observation as x;. If the training data for all
classes have already been stacked into the matrix
XER™™, then the transposition of the ith row of X is the
column vector Xx;, the total-scatter matrix is

V=2 (x,-%)(x,-%)" (1
i=1

where Xx is the total mean vector whose elements

correspond to the means of the columns of X.

Let the matrix X; be defined as the set of vectors X;
that belong to class j, and then, let V,, and V; be the
within-class scatter matrix and the between-class scatter
matrix, which are respectively defined as:

4
V=2 > (x,-%)x,-X)" )
Jj=1 xleX”
L - - T
Vi =2 m (X, -%)X,; -%) 3)

J=1

| . .
where x; =— z x; is the mean vector for class j;
n X;€x;

- 1& . :

X = —.le- is the total mean vector; m; is the number
J =1

of observations in class j.
The total-scatter matrix is equal to the sum of the

between-scatter matrix and the within-scatter matrix:
V, =V, +V, 4)

FDA looks for a projection matrix, f, which
maximizes the Fisher’s criterion.

Trer () = ez max |8V, B/ BV, (5)
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Thus, the maximization problem reduces to solve
Vbﬂ = anﬂ (6)

where the eigenvalues 7 indicate the degree of overall
separability among the classes. If ¥, is nonsingular, we
can obtain a conventional eigenvalue problem by the
following expression:

V., Vo =np (7)

Notice that there will be =min(K—1, d), eigenvalues
m>m>..>n, and ¢ corresponds to eigenvectors f=(f,
P, ..., Bo). So, the discriminant function can be given by

y=B"x (8)

With the discriminant function, the Mahalanobis
distance (Mp) can be used to identify which class the
new measured data G; belong to. If a new sample is
denoted as x = (x', x%,+++, x )", then

Mp=(x-p)" > (x-p) )

where u, = (u,,p,,,L ,p,,)" isthe mean vector of G'.
Therefore, the fault diagnosis problem is to compare

the Mp, of all the candidates and select the minimum.

mig{l{MD[} =1 (10)
i=l,

Ifi=1, 2, -+, k, which means that the new data
belong to G, G*, -, G~ indicating various stability

conditions. The FDA model of discriminant procedure is
shown in Fig. 1.
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3 SVM classifier

3.1 Brief theory of SVM

SVM methodology [18—19, 22-25] is a kind of
machine learning technique based on statistical learning
theory. The basic idea of applying SVM to patterning
classification can be stated as follows.

Give the training set (x;, y;), where i=1, 2, -, m,
xEQ, yE {~1, +1} can be separated by the hyperplane
w'x + b = 0, where w is the weight vector and b is the
bias. If this hyperplane maximizes the margin, then the
following inequality is valid for all input data:

(wal- +b)y; 21, for all x; where i=1, 2, -, r

(11)

The margin of the hyperplane is equal to 2/||w||.
Thus, the problem is maximizing the margin by
minimizing ||w|//2 subject to Eq. (11). This is a convex
quadratic programming problem. Lagrange multipliers
(LM) (>0, i=1, -+, r) are used to solve

Ly == a,[(w'x; +b)y, 1]+ | w|P /2.
i=1

After minimizing L, with respect to both w and b,
the optimal weights are given by: w" = Zal-* yix;.
i=1
Only if >0, x; are called support vectors. The dual
of the problem is given by:

1. r
Ly(a) = -EZZafajyfijij +24

i=1 j=1 i=1

(12)
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The LM is only non-zero, when (w'x+b)y=1. The
optimal bias for any support vector x; is given by:
b*:y,-—w*Tx,-. When SVMs are trained, the decision
function takes the form of:

F(x)=sign(> a; yix;x" +b) (13)
i=1

where a; are optimal LM; sign(-) is the signum

function. It gives +1 (stable pillar) if the element is

greater than or equal to zero and —1 (failed pillar) if it is

less than zero.

For input data with a high noise level, SVM uses
soft margins that can be expressed as follows with the
introduction to the non-negative slack variables &,
=1, =, r

(b+w X))y >1-¢ for i=1, 2, *, r (14)
To obtain the optimal separating hyperplane, it

L a 1 .
should be minimized by y = Cz gk +5 | w]* subject
i=1
to Eq. (14), where C is the penalty parameter controlling
the tradeoff between the complexity of the decision
function and the number of training misclassified
examples.

For a linear non-separable case, SVM performs a
nonlinear mapping of the input vector x from the input
space R" into a higher dimensional Hilbert space, where
the mapping is determined by kernel function K(x, y).
Radial basis function (RBF) is one of the kernel
functions that are given by K(x, y)=exp(—|x—y|*/2g>),
where g is the width of the RBF kernel [23]. After a
kernel function is selected, the decision function will
become:

F(x)= sign{z a y,K(x;,x) +b*} (15)
i=1
where C and g are user-determined parameters by an
iterative process selecting an optimum value based on
the full training data set. The election of the parameters
plays an important role in the performance of SVMs.

Further detailed mathematical description over SVMs
can be referred from Refs. [18—19, 22—-25].

3.2 SVMs model of discriminant procedure

The approach for the development of the
SVMs-based correlation can be divided into five stages:
@ Collection of database in which the data have been
divided into two sub-sets, a training dataset and a testing
dataset; @ Linear scaling of the train data set from 0 to
1 and calculation of the various parameters (model
parameters) for establishing the classification function;
(® Estimation of the optimal model parameters (C, g)
using the combined approach of K-fold cross validation

and grid search method (GSM) [25]; @ Establishment
of the final SVMs model for pillar stability with the help
of the best parameters and & Evaluation and validation
of the SVMs model by evaluation with testing data and
comparing it with literature correlations. For better
understanding of a flow diagram, the establishment of the
SVM-based model for prediction of pillar stability is
described as shown in Fig. 2.

Collection of data sets |

| Data preprocessing |

|Initial (C, g)[——{SVM model training|

Average|accuracy

N
ermination criteria

Yes
|SVM model establishment|

IModel performance evaluationl—»

Fig. 2 Flowchart of key steps for establishment of SVM model

Grid search
on (C, g)

4 Hazard of pillar prediction of FDA model
and SVM model

4.1 Data collection

Underground mine excavation is usually achieved
by the room and pillar method, bord and pillar method,
longwall mining method from the aspects of work safety
and cost issue [1, 2, 14, 17, 26—29]. The present study
aims to establish predictive models for pillar stability for
underground mines purposes using FDA and SVMs
technique, and also aims to attract the mining
engineering attention to predicting pillar stability. For
this purpose, a total of 46 case histories were collected
from JAISWAL and SHRIVASTVA [16], MOHAN et al
[10] and ESTERHUIZEN et al [11]. Tables 1 lists the
details of the failed and stable cases of coal pillars of
Indian coal mines and the USA underground stone mines,
respectively. The scatter plot matrix of the original data
set is given in Fig. 3. For implementing the FDA and
SVMs models, the data have been divided into two
sub-sets:

1) A training dataset. This is required to train the
model. In this study, 40 out of a total of 46 data sets are
considered for training.

2) A testing dataset. This is required to estimate the
model performance. In this study, the remaining 6 data
sets are used for testing.
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Table 1 Summary of characteristics of stable and failed pillars

No. Mine Wim Hm W/H  oycs/MPa o,/MPa Pillar stability
1 Amritnagar (Nega Jamehari) 3.60 450 0.80 45 5.01 F
2° Amritnagar (Nega Jamehari) 3.60 6.00 0.60 45 4.68
3 Begonia (Begonia) 3.90 3.00 1.30 26 5.80 F
4 Amlai (Burhar) 4.50 540 0.83 25 3.61 F
5 Sendra Bansjora (X) 4.65 8.10 0.57 24 2.77 F
6 W. Chirimiri (Main) 5.40 375 1.44 45 8.12 F
7 Birsingpur (Johilla top) 7.50 3.60 2.08 38 10.45 F
8 Pure Kajora (Lower Kajora) 5.40 3.60 1.50 33 6.02 F
9% Pure Kajora (Lower Kajora) 4.95 3.60 1.38 33 7.43 F
10 Shankarpur (Jambad bottom) 4.50 480 094 47 4.20 F
11 Ramnagar (Begunia) 2.85 1.80 1.58 26 7.76 F
12 Ramnagar (Begunia) 3.00 1.80 1.67 26 6.17 F
13 Kankanee (XIII) 19.80 6.60 3.00 27 5.88 F
14 Kankanee (XIV) 18.60 8.40 2.20 27 5.83 F
15 Bellampalli (Ross) 5.40 3.00 1.80 48 4.01 S
16 Nimcha (Nega) 9.90 6.00 1.70 50 3.09 S
17 Morganpit (Salarjung) 8.10 3.00 2.70 46 14.08 S
18 Ramnagar (Ramnagar) 9.90 270 3.70 28 5.20 S
199 Lachhipur (Lower Kajora) 7.20 5.10 1.40 33 2.25 S
20 N. Salanpur (X) 9.00 5.10 1.80 21 2.08 S
219 Bankola (Jambad top) 10.10 480 2.10 35 3.09 S
22 Bankola (Jambad top) 6.30 3.00 2.10 35 5.20 S
23 Suraka cchar (G-I) 160.00 3.50 4.60 29 4.14 S
24 Lachhipur (Lower Kajora) 18.30 5.10  3.60 33 1.40 S
25 E. Angarapatra (XII) 6.00 2.10 290 19 3.00 S
26 Kargali Incline (Kathara) 9.30 3.60 2.60 40 2.34 S
27 Jamadoba 6 and 7 Pits (XVI) 5.80 2.00 290 29 7.59 S
28 Topsi (Singharan) 7.00 1.80 3.90 41 5.15 S
29 Stone mines (USA) 10.70 1830 0.58 215 9.00 F
30 Stone mines (USA) 10.70 1830 0.58 215 9.40 F
31 Stone mines (USA) 10.70 1830 0.58 215 10.30 F
32 Stone mines (USA) 1520 2740 0.56 153 12.60 F
33% Stone mines (USA) 10.70 1830 0.58 215 12.80 F
34 Stone mines (USA) 1220 2740 0.44 150 17.20 F
35 Stone mines (USA) 8.50 15.80 0.54 150 17.20 F
36 Stone mines (USA) 1220 2740 0.44 150 17.30 F
37 Stone mines (USA) 7.90 9.80 0.81 160 19.00 F
38 Stone mines (USA) 12.80 7.30 1.73 160 17.40 F
39 Stone mines (USA) 12.50 1520 0.82 160 17.80 F
40 Stone mines (USA) 6.10 1220 0.49 160 19.00 F
419 Stone mines (USA) 6.70 1220 0.54 160 20.00 F
42 Stone mines (USA) 3.70 8.50 043 215 24.10 F
43 Stone mines (USA) 8.20 9.10 0.90 160 25.00 F
44 Stone mines (USA) 5.50 7.30 0.75 160 27.00 F
45 Stone mines (USA) 12.20 15.80 0.77 165 8.40 F
46 Stone mines (USA) 12.20 15.80 0.77 165 7.60 F

Test data from 1 to 28 are referred to Refs. [10, 16]; Test data from 29 to 46 are referred to Ref. [11]; a) denotes testing sample by selecting stochasticly; The
total number of data is 46.
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Fig. 3 Scatter plot matrix of original data set

4.2 Model development and validation

In order to establish predictive models, five main
pillar parameters are used in the developed SVMs model
on the basis of previous researching indices of pillar
stability [10—17]. They are the width (W), height (H), the
ratio of the pillar width to its height (W/H), the uniaxial
compressive strength of the rock (oycs), pillar stress(oy).
All these parameters are controllable. Thus 5 parameters
are used to establish pillar stability prediction models
based on FDA and SVMs incorporating the pillar
Table 2 relevant input
parameters used to develop pillar stability prediction

parameters. indicates the
models with their maximum, minimum, mean and
standard deviation, respectively. Moreover, the outputs of
FDA and SVMs models for the classification prediction
of pillar stability are as follows: S is defined as stable
pillar and F is defined as failed pillar according to
characteristics of pillar stability for underground mines.
Figure 4 illustrates typical failure mechanism of a
naturally fractured pillar [9], including 1) failure by
lateral kinematic release of preformed blocks due to the
increasing vertical load, 2) failure as a result of the
formation of inclined shear fractures transecting the

Table 2 Descriptive statistics of input parameters for SVMs
model

Item Wim H/m WIH

chs/MPa UI/MPa

Maximum 19.8 27.4 4.6 215.0 27.0
Minimum 2.85 1.80  0.43 19.00 1.40
Mean  8.679 8.699 1522 88739 9510
Standard ) he 5166 1.072 71203 6.832
deviation

e K )
- BN

Fig. 4 Typical failure mechanism of a naturally fractured pillar
[9]: (a) Occurrence of preformed blocks; (b) Formation of
inclined shear fractures transecting pillar; (c¢) Transgressive
fractures

pillar, typically in relative low width-to-height (W/H)
ratio pillars and 3) failure along a set of transgressive
fractures when the angle of inclination of the fractures to
the pillar principal axis of loading exceeds the angle of
friction. Overall, the mechanical response of a pillar is
directly linked to the presence of geological structures
and it can be safely assumed that these effects would be
more noticeable for slender pillars.

The boxplot of the original data set is given in
Fig. 5. For most of the data groups, the median is not in
the centre of the box, which indicates that the
distribution is not symmetric. In addition, all dependent
variables do not have any outlier except W, H and W/H.

250 8] Outlier
— Whisker
75th percentile
200
+———Mean
g 23 Median
_— o
S 150}
o 25th percentile
g 1
é 100 —Whisker
= -
h=
<
50
13 34022
&2 & =2 =
0 L ey
1 1 1 1

/4 H WIH aucs O-P
Input parameter

Fig. 5 Boxplot of original data set

4.2 1 Testing and validation of FDA model

In the present approach, the engineering data
[10—11, 16] are introduced to show how the FDA method
is applied in practice, and the 40 sets of samples are
selected as the training samples of FDA model (Table 1).
FDA model for the prediction of pillar stability is
established after developing the model using the FDA
theory discussed above. The Fisher discriminant function
generated by the FDA has the following form:

y=0.082W+1.975H+0.006 W/H—0.073 005~
2.04605,—0.187 (14)
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Equation (14), canonical discriminant function, was
used in the analysis. Table 3 and Table 4 show that the
discrimination capability of Eq. (14) is significant. The
corresponding feature value of discriminant function 1 is
1.856, with variance ratio (discriminant -efficiency)
100%>85%, which can explain all of the sample
information; the correlation coefficient is as high as

0.806; 5 value and the P value are very small, as 0<<0.05.

So it is concluded that the discriminant function can well
distinguish the various categories through significance
test. In order to investigate the validity and accuracy of
the FDA model evaluation of pillar stability, the
proposed model with 40 groups of training data is tested
and the results are shown in Table 4. On each back to the
sub, and its actual situation, the test results included are
listed in Table 5. It can be seen that 95.0% of original
grouped cases are correctly classified by FDA method
from Table 5. Cross validation is done only for those
cases in the analysis [30]. In cross validation, each case
is classified by the functions derived from all cases other
than one case. Therefore, 90.0% of cross-validated
grouped cases is correctly classified by FDA method.
The results show that this model has high prediction
accuracy and can be used in practical engineering.

Table 3 Eigenvalue of Fisher discriminant function

. . | Variance/ Cumulative Canonical
Function Eigenvalue % value/% correlation
1 1.856 100.0 100.0 0.806

Table 4 Wilks’ Lambda of Fisher discriminant function

Test of Wilks’ ) ] o
function Lambda Chi-square  f  Significant
1 0.350 37.252 5 0

Table S Prediction results obtained for pillar stability by FDA

Type Predicted value(FDA) F S Total
F 28 0 28
Train
S 2 10 12
F 4 0 4
Test
S 1 1 2
Total 35 11 46

The rows indicate the number of points that the FDA predicted corrcectly
and the number of errors committed compared with the actual condiction, as
also the pillar stability assessed by FDA in each case

The validity of the proposed method is shown in
two aspects [19—21]: 1) high correct rate for training data
and 2) high accuracy for testing data based on the
predicted and measured (real) values, about 6 testing
samples (listed in Table 1) by the FDA model. The
results are identical with actual pillar conditions expect
one sample.

4.2 2 Testing and validation of SVMs model

CHANG and LIN [24] developed a LIBSVM toolbox
(software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm) for SVMs modeling in Matlab application. This
toolbox is used here for the application of SVMs in
predicting pillar stability for underground mines. In
SVMs, each of the input variables (W, H, W/H, oycs, 0,)
is first normalized to their respective maximum values
by using Eq. (15) [18—19, 24-25]. In this equation, Xnom
is the normalized value, x is the actual value, x,, is the
maximum value, and x.;, iS the minimum value. The
output variable pillar stability is also normalized with
respect to the actural value.

xnorm:(x_xmin)/(xmax_xmin) (1 5)

The engineering data in Table 1 [10—11, 16] are
introduced to show how the SVMs method was applied
in practice. In the present study, the above SVMs model
has been used for the prediction of pillar stability. In
SVMs, each of the input variables (W, H, W/H, oycs, 0,)
is first normalized to their respective maximum values
[18—19, 23—-25]. The output variable pillar stability is
also normalized with respect to the actual value. 40 sets
of samples are selected as the training samples of SVMs
model (listed in Table 1). SVMs model is established
using the SVMs theory discussed above. When applying
SVMs, the goodness of fit is determined by the penalty
factor C and insensitive parameter g. LIBSVM provides
a parameter selection tool using the RBF kernel: cross
validation via parallel GSM [24-25]. For the grid search,
currently we support only C-SVM with two parameters
C and g. They can be easily modified for other kernels
such as linear and polynomial, or for SVMs. In the
current study, the free parameters of SVMs are selected,
following a K-fold cross-validation (K=5) experiment to
control generalization capability of SVMs, and the RBF
kernel is used as the kernel function for training the
samples, obtaining the best parameters of SVMs because
it tends to give better performance. Figure 6 shows an
example of the GSM result, where the x-axis and the
y-axis are log,C and log,g, respectively. The z-axis is the
5-fold average performance. The findings of this
experiment are that SVMs are quite robust against
parameter selections.

Then we perform the 5-fold cross-validation on the
training set to choose the proper parameters of C = {2,
277 e, 2% and g={27% 27, -+, 2%, respectively.
8x8=64 parameter combinations of (C, g) are tried and
the one with the best cross-validation accuracy is chosen
as the parameter values of the RBF kernel. Then the best
parameter pair (C, g) is used to create the model for
training. After obtaining the predictor model, we conduct
the prediction on each testing set accordingly. The result
of the SVMs parameter selection by GSM is shown in
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Fig. 6. The optimum estimated values of the model

parameters obtained using cross-validation are as follows:

capacity constant C is 32, Gaussian kernel parameter g is
2 and the average value of MSE is CVmse, which is
equal to 97.5%. 40 sets of training sample data were
back evaluated one by one using the SVMs model of
pillar stability and compared with the actual situation.
The compared pillar stability test results of training data
are shown in Fig. 7 and Table 6. SVMs have good
performance for classification forecast from Fig. 7 and
Table 6, which prove that the model has stable and
reliable prediction ability. Therefore, the SVMs model is
feasible and effective for pillar stability forecast and can
be put into use.
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Fig. 6 MSE values for different combinations of log,C and
log,g
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Fig. 7 Comparison results of pillar stability prediction using
FDA and SVMs method (“1” denotes “Stable pillar”;
“2”denotes “Failure pillar”)

Table 6 Prediction results obtained for pillar stability by SVMs

Type Predicted value F S Total
F 28 0 28
Train
S 0 12 12
F 4 0 4
Test
S 0 2 2
Total 32 14 46

The rows indicate the number of points that the SVMs predicted corrcectly
and the number of errors committed compared to the actual condition, as
also the pillar stability assessed by SVMs in each case

To validate the predictive models based on the
predicted and measured (real) values, 6 testing samples
(listed in Table 1) were validated by the SVMs model.
The results are shown in Fig. 7 and Table 6. The results
are identical with actual pillar conditions and the
accuracy of this SVMs classification model is well.

4.2 3 Sensitivity analysis

To reflect the discriminant criterion of pillar
stability for determining the ability of size discrimination,
using a useful concept of sensitivity analysis (F statistics)
to identify it [21]. F statistics is the mean-square
deviation’s ratio between group variation and the
standard deviation, reflecting the different ability of
indicators’ discrimination. The stronger the F is, the
greater the recognition is. After being calculated, the
involved identification of the W, H, W/H, oycs and o,
was normalized, and the values of F were 0.1494,
0.2102, 0.0050, 0.4654, 0.1700, as shown in Fig. 8. Thus,
oucs and H determine the strongest, followed by a,, W,
WIH.
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Fig. 8 Sensitivity analysis between pillar stability and each
input parameter

4.3 Comparison of FDA and SVMs models

In estimating the SVMs model prediction
performance, the results of SVMs models are compared
with those of FDA method. Index such as the correct
classification rate P, by re-substitution method [21], P,
by cross validation method [30] was defined as the ratio
of number of correct classification in test samples to total
number of samples in test set, which can be used to
evaluate the prediction accuracy of the proposed models.
Comparison of the results of pillar stability evaluation
obtained by the FDA and SVMs methods for the testing
dataset are presented in Table 7. Original grouped cases
and cross-validated grouped cases correctly classified by
FDA method are 95.0%, 90.0%, respectively, whereas
the corresponding values for SVMs method are 100%,
97.5%. Table 7 show that the SVMs method performs
better than the FDA method. It can be concluded that the
SVMs model can be applied to forecasting the pillar
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stability for underground mines classification with a high
accuracy.

Table 7 Index values showing performance calculated by

models

Model Dataset P /% P./%

Train 97.5
FDA 90.0

Test 83.3
Train 100

SVMs 97.5
Test 100

The bar graph in Fig. 7 of the measured and
predicted pillar stability by FDA and SVMs models
shows that the prediction by SVMs is very close to the
measured pillar stability, whereas the prediction by FDA
has some error and is not able to predict the pillar
stability in the best versatile way.

The above-mentioned comparisons indicate that
both the two models are competitive with each other in
pillar  stability prediction for classification of
underground mines, as shown in Fig. 7 and Table 7, but
the performance of the SVMs is relatively superior to the
FDA model. Moreover, the SVMs have some added
advantages, which come from the specific formulation of
an objective function with constraints. This function is
solved using LM and has some inherent advantages and
characteristics: 1) a global optimal solution will be found;
2) the result is a general solution avoiding overtraining;
3) the solution is sparse and only a limited set of training
points contribute to this solution; and 4) nonlinear
solutions can be calculated efficiently due to the use of
inner products.

5 Conclusions

1) FDA and SVMs methodologies are proposed to
forecast the pillar stability for underground mines by
using the statistical learning algorithm. The factors
influencing the pillar W, H, W/H, oycs and o, are taken
into consideration to build models on the determination
of pillar stability from various coal and stone mines.

2) The FDA and SVMs model are obtained through
training 40 sets of practical measuring samples and
another 6 sets. The correct classification rate P, by
re-substitution method and P, by cross validation
method are introduced to verify the stability of FDA
model and SVMs model. The P, and P., between the
observed and predicted values by SVMs model are found
to be 100% and 97.5%, respectively; the values by FDA
are found to be 95% and 90% respectively. Compared
with the FDA method, the results show that SVMs model
has high prediction accuracy and can be used in practical
engineering.

3) Sensitivity analysis shows the most important
parameters on the induced stresses: oycs and H determine
the strongest, followed by o,, W, W/H. It is probably due
to the fact that the variation of these parameters is not
very much.
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