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Fig. 2 Main experimental equipment: (a) Electro-hydraulic servo material testing machine; (b) Nuclear magnetic resonance
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Fig. 4 Flow chart of experiment
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Fig. 8 Plastic strain damage processes of granite under different confining pressures: (a) Relationship between axial plastic strain
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Table 1 Final cumulative plastic strain values of granite specimens under different confining pressures

Confining pressure/MPa Axial plastic strain/107

Radial plastic strain/10™

Volumetric plastic strain/107

50 0.264
80 0.399
100 0.469
120 0.386
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-0.375 -0.650
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Fig. 10 7, spectrum distribution curves of granite before and after cyclic loading and unloading under different confining

pressures: (a) 50 MPa; (b) 80 MPa; (c) 100 MPa; (d) 120 MPa

175 —o— Porosity before cyclic loading and unloading
—O— Porosity after cyclic loading and unloading
1.530
1.50 1.447 R
. L
A 1
1 g 1 |
+70.6%
S12s5f ! : 14662% )
2 1+ o, I
Z 1+60.2%  To48% !
] ! | ! 1
S1.00F | | ' !
At 1 i 1 |
& o L
0.889 0-878\58 - 0.897
0.75 + '
0‘50 1 1 1 1 1 1 1 1 1
50 60 70 80 90 100 110 120 130

Confining pressure/MPa
11 AN[A] LS R A6 B A PR AN s 3 i e 1 FLBR 2 A2 AL

Fig. 11 Porosity changes of granite before and after cyclic
loading and unloading under different confining pressures

IR0 0 #8505 A6 59 2 RE B FL B BE 43 0 N 1.424%
1.447% 1.425% F11.530%, #] LLE H 15 R b0 2%
B G AL A B Ak . IR I E % 20 Wi

DU A A R O FLBRUE 3 T s, HgiE b
W HIEIN T 60.2%. 64.8%. 66.2% F1170.6%. A
UCRIGH, PRI BN RIS R, LN e S
R B BT 58 E 1) 45%(F11A 74.2 MPa),  HAFIR
PRI 3 B 2 X0 T8 B 5 T A SR 4 i i it 7
24N AR, I ET 1 5 A B
MRILBREEARSRE L, e s lAEd k2
I AE FARAE T RILBRIIR S, KERFLBRII
A AL P A 45 R R AN AT IR (AR AL, S EEL
Bl S W SR 3G N T4k SR NI E AR, 8 Ak
FEW 2 R AR SRR . WAL R, a3
AR B AL X A R AN SE # R AR AR AN AT )
R FEZE MR TRE S, A6 A R 1) Rt
SEPE N AR BEOR,  TRRIRAE FA HR AN BT R AR AR
T2 B T4 1 2 3URE P A [ RS 1R LB 485 ) T
SEA A SR .



1196 T EA R R 2022 4 4 A
Mechanics and Mining Sciences, 2009, 46(2): 408-420.
£ ian- i -
3 zn 1’% [2] XU Jian-kun, ZHOU Rui, SONG Da-zhao, et al.

1) Bl &5 SR I8 B AR e AR % 2 3 ) Ok 7
BN, BERAA L, 24 5 50 MPa 1k 3|
120 MPa i}, 8 5 5 URE 1) B TH 98 1 R AR 1 8% 45
iS5 LD KIS (ERIEAM SR T, 1 5
AL E RSB R R RN RE . UEEN
50 MPa #1180 MPa i}, 1 i< il FE R I H 26 R 3 )5
I B AR TEARFAIE, 10 2% [l 24 100 MPa #1120 MPa
B, A6 S R OGR B AR AR AT A

2) BEAPEIRESE I, 8 A A Rl Rt
S N AR, AR A AR AR R S AR
b= i R P E B = 2 R A R
) R AR BT S8 B AR (AR L AR R R 2,
R AR SR T S8 1 S AR KA TR AR . 1T 2R A
BT ED B RS R R, FaTRE R
WL

3) fE R — @ BT, Bl A A R 1
I, AE B BRE ) BRI G S EORN R R
HHSHIE K, MR ) N AR 35 S 503G K ek
/No X R BRERXS A R S8, T8 R A IR
SR A T B K T RS LY AR T T X AR ) R AR
WS H, 16K 5 IRFEE PRI T I BB AR T 1 K
SRR, TS B S B P S AR T 4 T 3 A
i AN ARG ZH, LA R R AR
TS L e AR R

4) A& R 0 E 2R S A8 A R T, 3 2 A i
AL B 25 . M INEN S RTIE A R
(1) T, V8 o0 A7 28 R0 = Ve s by, LA S5 PR DL
P AN AL B R BE (T, 48 53 0 29 9 0.1~1 ms A 1~10
ms) Al —Ff K FLBE R (T, 18 294 10~1000 ms) fit] 44
FIRHIE,  BANIA B A6 5 5 R A G 45 A 2
B8 JEIINED B S A6 B A R ) T, 0 A h 42
SRS, FLAIW A5 i ER I KL S
W% . FLARIE K DL R AR LB KR T i (R ALE

REFERENCES

[11 ALBER M, FRITSCHEN R, BISCHOFF M, et al. Rock
mechanical investigations of seismic events in a deep

longwall coal mine[J]. International Journal of Rock

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

Deformation and damage dynamic characteristics of coal-
rock materials in deep coal mines[J]. International Journal of
Damage Mechanics, 2019, 28(1): 58-78.

HU Jian-hua, YANG Dong-jie. Meso-damage evolution and
mechanical characteristics of low-porosity sedimentary rocks
under uniaxial compression[J]. Transactions of Nonferrous
Metals Society of China, 2020, 30(4): 1071-1077.

Bk A, BEASE, XS, A R I AT R 0 OB A
I FELD). op R B 2 RS0, 2018, 48(4): 1-27.
YAO Jun, HUANG Zhao-qin, LIU Wen-zheng, et al. Key
mechanical problems in the development of deep oil and gas
reservoirs[J].  Scientia Mechanica &

Astronomica), 2018, 48(4): 5-31.
JIA' Chao-jun, XU Wei-ya,

Sinica(Physica,

WANG Ru-bin, et al.
Characterization of the deformation behavior of fine-grained
sandstone by triaxial cyclic loading[J]. Construction and
Building Materials, 2018, 162: 113-123.

WANG Zhe-chao, LI Shu-cai, QIAO Li-ping, et al. Fatigue
behavior of granite subjected to cyclic loading under triaxial
compression condition[J]. Rock Mechanics and Rock
Engineering, 2013, 46(6): 1603-1615.

ZHOU Zi-long, WANG Hai-quan, CAI Xin, et al. Damage
evolution and failure behavior of post-mainshock damaged
rocks under aftershock effects[J]. Energies, 2019, 12(23):
4429.

TR, BT . BRI INE T A R AT S R RE I
B[], PR A2 4R (B R RLEIR), 2006, 34(6): 667-671.
SU Cheng-dong, YANG Sheng-qi. Experimental study on
deformation and strength characteristics of rock specimens
under cyclic loading and unloading[J]. Journal of Hohai
University (Science and Technology), 2006, 34(6): 667-671.
COSTIN L S, HOLCOMB D J. Time-dependent failure
of rock under cyclic loading[J]. Tectonophysics, 1981,
79: 279-296.

GE Xiu-run, JIANG Yu, LU Yun-de, et al. Testing study on
fatigue deformation law of rock under cyclic loading[J].
Chinese Journal of Rock Mechanics and Engineering, 2003,
22(10): 1581-1585.

EIEA, WABE, & 6, & R B AR LS =
P57 AR TERF IR IR T AL [J]. 5 A 1 5 TR, 2006,
25(3): 473-478.

ZHANG Qing-xu, GE Xiu-run, HUANG Ming, et al. Testing
study on fatigue deformation law of red-sandstone under
triaxial compression with cyclic loading[J]. Chinese Journal

of Rock Mechanics and Engineering, 2006, 25(3): 473-478.



BREH4H

Wk, 5.

TR B AR R

=

I

PiAS T 5 a5 44 53 W

1197

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

XIAO lJian-qing, DING De-xin, JIANG Fu-liang, et al.
Fatigue damage variable and evolution of rock subjected to
cyclic loading[J]. International Journal of Rock Mechanics &
Mining Sciences, 2010, 47(3): 461-468.

XIAO lJian-qing, DING De-xin, XU Gen, et al. Inverted S-
shaped model for nonlinear fatigue damage of rock[J].
International Journal of Rock Mechanics
Sciences, 2009, 46(3): 643-648.
CERFONTAINE B, COLLIN F. Cyclic and fatigue

and Mining

behaviour of rock materials: Review, interpretation and
research  perspectives[J]. Rock Mechanics and Rock
Engineering, 2018, 51(2): 391-414.

JAZSC, W% |, FF 00, A M A AT B A AT P 2 A
0 T W AR 0 0 R VR ST, 6 0 7% DR AR,
2010, 29(6): 1172-1183.

ZHOU Jia-wen, YANG Xing-guo, FU Wen-xi, et al.
Experimental test and fracture damage mechanical
characteristics of brittle rock under uniaxial cyclic loading
and unloading conditions[J]. Chinese Journal of Rock
Mechanics and Engineering, 2010, 29(6): 1172-1183.

LIU En-long, HUANG Run-qiu, HE Si-ming. Effects of
frequency on the dynamic properties of intact rock samples
subjected to cyclic loading under confining pressure
conditions[J]. Rock Mechanics and Rock Engineering, 2012,
45(1): 89-102.

WIEYS, B, 5Kk & NIRRT AR R E = A 07
R[], iR =W A LR R, 2018, 37(8): 15-19.
HUANG Zheng-jun, ZHAO Xing-guang, ZHANG Lei.
Experiment on the fatigue characteristics of granite under
different confining pressures[J]. Research and Exploration in
Laboratory, 2018, 37(8): 15-19.

FORE, 5B AN F, A b AE R A A PN R K
SHREIERIFFE[D]. VLIRS, 2020, 2020, 28(6): 102-106.

LU Hui, JING Zheng, SUN Xue, et al. Acoustic emission
characteristics of Beishan granite under triaxial cyclic
loading and unloading[J]. Jiangsu Construction, 2020, 28(6):
102-106.

RS, ISR, DAL & PN EERSR AR TR bR
A R A IR 5 AR RRET]. B A 1S TR, 2014,
33(9): 1740-1748.

ZHAO Xing-guang, LI Peng-fei, MA Li-ke, et al. Damage
and dilation characteristics of deep granite at Beishan under
cyclic loading-unloading conditions[J]. Chinese Journal of
Rock Mechanics and Engineering, 2014, 33(9): 1740-1748.
BT R, TR, A IR EE R RS R A
PR AR ], TREHL R 249, 2016, 24(5): 881-890.
HU Guang, ZHAO Qi-hua, HE Yun-song, et al. Elastic

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

modulus’s evolution law of plagiogranite under cyclic
loading[J]. Journal of Engineering Geology, 2016, 24(5):
881-890.

B ST, AR, AL =R G E N ) AR
TR BT S A R R B0 B FE[T]. A 1%, 2020,
41(5): 1521-1530.

ZHAO Jun, GUO Guang-tao, XU Ding-ping, et al.
Experimental study of deformation and failure characteristics
of deeply-buried hard rock under triaxial and cyclic loading
and unloading stress paths[J]. Rock and Soil Mechanics,
2020, 41(5): 1521-1530.

GATELIER N. Mechanical damage of an anisotropic porous
rock in cyclic triaxial tests[J]. International Journal of Rock
Mechanics and Mining Sciences, 2002, 39(3): 335-354.

LI Xin-ping, WANG Bin. Research on distribution rule of
geostress in deep rock in Chinese mainland[J]. Advanced
Materials Research, 2011, 243: 2116-2122.

FE I, ZET0RE, SR, 55 MRS A PPN ) 4R K
ARSI S EU T[T S8BT, 2015(5): 28-33.

LU Gao-ming, LI Yuan-hui, ZHANG Xi-wei, et al.
Experimental test and strain damage parameters analysis of
brittle rock under cyclic loading-unloading[J]. Metal Mine,
2015(5): 28-33.

& W, RSN, 3 R, & JEIMENE R ORE S i S e
EEACRHIET]. KILRHERE BT, 2020, 37(3): 90-95, 107.
XU Peng, ZHOU Jian-bo, HUANG Jun, et al. Damage
evolution and strain energy characteristic of marble under
triaxial cyclic compression[J]. Journal of Yangtze River
Scientific Research Institute, 2020, 37(3): 90-95, 107.
AT, WIS, WS . TUA RN MRS B T
TR AR [I]. BRI, 2017, 42(4): 969-976.

LI Cun-bao, XIE He-ping, XIE Ling-zhi. Experimental and
theoretical study on the shale crack initiation stress and crack
damage stress[J]. Journal of China Coal Society, 2017, 42(4):
969-976.

XHEHT, 28 Ve . T 08 B0 M ED AR B0 Rk K R R S
Kaiser ZUSAT FE[T]. BERFL2F40R, 2019, 47(6): 73-80.

LIU Hai-tao, QIN Tao. Study on damage characteristics and
acoustic emission Kaiser effect of sandstone under cyclic
loading and unloading conditions[J]. Coal Science and
Technology, 2019, 47(6): 73-80.

MOMENI A, KARAKUS M, KHANLARI G R, et al
Effects of cyclic loading on the mechanical properties of a
granite[J]. International Journal of Rock Mechanics and
Mining Sciences, 2015, 77: 89-96.

LAVROV A. The Kaiser effect in rocks: principles and stress

estimation techniques[J]. International Journal of Rock



1198

T A e E SR

2022 £ 4 H

[30]

[31]

Mechanics and Mining Sciences, 2003, 40(2): 151-171.

W T, BB, RS AR Y BRI R o A T A
Ko RSTRRE D). S5 155 TR A4, 2004, 23(11): 1810
-1814.

JIANG Yu, GE Xiu-run, REN Jian-xi. Deformation rules and
acoustic emission characteristics of rocks in process of
fatigue failure[J]. Chinese Journal of Rock Mechanics and
Engineering, 2004, 23(11): 1810-1814.

B, P, A, 55 ST RRESER T, W K R R
ERE BT, EERFERIR, 2020, 28(3): 430-441.

[32]

analysis of fractured sandstone based on nuclear magnetic
resonance T, spectrum[J]. Gold Science and Technology,
2020, 28(3): 430-441.

JARET, IRTE, AR, 55 B TR EOR ) R S
N O AC R FE ()], 50 15 5 TR SR, 2014, 33
(S2): 3523-3530.

ZHOU Ke-ping, HU Zhen-xiang, LI Jie-lin, et al. Study of
marble damage evolution laws under unloading conditions
based on nuclear magnetic resonance technique[J]. Chinese

Journal of Rock Mechanics and Engineering, 2014, 33(S2):

MAO Si-yu, CAO Ping, LI Jian-xiong, et al. Fatigue damage 3523-3530.

Analysis of damage deformation and mesoscopic structure of
granite under deep cyclic loading

HU Jian-hua, ZENG Ping-ping, YANG Dong-jie, XU Xiao

(School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract: Through triaxial constant amplitude cyclic loading tests of granite under different confining pressures
and nuclear magnetic resonance technology, the damage deformation and meso-structural characteristics of rock
specimens were analyzed. The results show that: 1) When the confining pressure increases from 50 MPa to 120
MPa, the cumulative plastic strain and strain damage parameters of specimens increase as a whole; 2) With the
increase of the number of cycles, the axial cumulative plastic strain of specimens increases gradually, while the
radial and volumetric cumulative plastic strains increase in stages. The increment of plastic strain decreases
sharply first and then tends to be stable; 3) Under a certain confining pressure, the axial strain damage parameters
of specimens decrease, the volume strain damage parameters increase, and the radial strain damage parameters
first increase and then decrease with the increase of the number of cycles; 4) After cyclic loading and unloading,
the T, spectrum distribution curves of specimens change from three-peak structure to two-peak structure, and the
meso-structure mainly shows the characteristics of increasing the number of large pores, pore size and overall
porosity.

Key words: granite; cyclic loading; confining pressure; number of cycles; plastic strain; damage parameter
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