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Table 1 Chemical compositions of wires and substrate

Mass fraction/%

Element

AZ31 ER5356 6061

Mg Bal 5.00 1.03
Fe - 0.40 0.70
Si 0.02 0.25 0.56
Ti - 0.15 0.15
Mn 0.40 0.10 0.15
Cr - 0.10 0.04
Cu - 0.10 0.17
Zn 0.76 0.10 0.25
Al 2.96 Bal. Bal.

12 B&RIZ

2255 W IS A 1) 3 5 G2 1) 2 R an 1 B
TNe ARG KN B T PI350 £ AR IR $E
P 2 ) MH24 T AL A . BLas AFEhiliE . 294K
TSR AN 22 AL 2H %o

WM HIERT, Se AL BRI R I 1) AL
2, JEHEEBRA VYD, S5 F AT LS
SR RS . S8 T S 5053 i 9 HERR FLIR 220 A,
LHANEE 70 Hz, HEFEE E 20 cm/min, 5 H) H A2
4.8 mm, NG E 4 mm, EHRIA 200, BIMERH
T A FE 8 mm, FRI7(99.99% & <) It &= 15 L/
min. JEITIH % AZ31 ATERS356 3% 22 38 & H ) 15
B 5 HIEM R, ARAE ()T B Mg TT 3 it

HAHO:

v.D?p.w
W= z i Pi Mg (1)
zviDizpi
A v(i N AZ31, ER5356) Nk« %, D(GA
AZ31, ER5356) A 2 ¥ H 1 ; p(i N AZ31,

ERS5356) N2 %% w2t Mg TG E I i &)
Hr. Wit AZ31 5 ER5356 1% 225 JiF 3% 4238 L Lh
AR Mg 4 X BUR 2R, S HIEM
PRI ¥ 5 TS G 2 s

Shielding

Robot control
gas cabinet

Bl XL RR G i R 4t
Fig. 1

manufacturing system

Double wires gas tungsten arc additive
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Table 2 Designed wire feed speed ratio of AZ31 to ER5356 and Mg content

Vg /(m-min™") Verssse/ (M min") Vazsi/Vers3ss w(Mg)/% Alloy

0.3 3.0 1:10 10.74 Al-1074Mg

0.5 3.0 1:6 14.18 Al-14.18Mg

0.6 3.0 1:5 15.80 Al-15.80Mg

0.75 3.0 1:4 18.11 Al-18.11Mg

1.0 3.0 1:3 21.67 Al-21.67Mg
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Fig. 2 Cross sections of manufacturing specimens with
different wire feed speed ratios: (a) 1:10; (b) 1:6; (c) 1:5;
(d) 1:4; () 1:3
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Fig.3 Dimensions of tensile specimens
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Fig. 4 Microstructures of manufacturing specimens with different feed wire speed ratios: (a) 1:10; (b) 1:6; (c) 1:5; (d) 1:4;

(e) 1:3
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Fig. 5 XRD analysis results of manufacturing specimens: (a) XRD patterns of specimens; (b) Details of box selection area

in Fig. 5(a)
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Fig. 6 IPF maps of manufacturing specimens with different feed wire speed ratios: (a) 1:10; (b) 1:6; (c) 1:5; (d) 1:4; (e) 1:3
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Fig. 7 Microstructure analysis results of manufacturing specimens: (a) Average grain size; (b) Area ratio of f-Al;Mg, phase/

eutectic structure to total area; (c) Number fraction of grains with Schmid factor over 0.4

FHH Mg I M FIEE RO, (R pAHIGHT s ik
2R T 15 )G, BRAETILE RN, %2HE
JE BV 1388 K AH A3 ae ALY AfRERSH I8N 1 [ A 2
fERRAHIE 2, Fo) RAHA H 2 450 C (3L
o7 3 ) P oK A Sk R 2L, T Ik 22 L
BRI AL, WANG 2SR, itk
KT 0.4 B db b5 5 KA . B 7(c)%
T 5 A BERF R bt 25 2 R KT 0.4 1 R R 2 H
it WE 7R DLEH, A H &l RT
83.41%, Ui BH 5 ZH M 15RE #0504 1) ZE J 1k
B2, BEEELBIEM, SAEE &R
W BERE /N, 3 ThE W 326 22 39 LU P 348 Jor o it 28 e ) 1
HE AU N

2.3 FEAREFHLEITEMEHRES BN
8 BT 9 5 LI A AAE o Mg 4 SO B DL K

a( ADFHFN B-ALMg, AH/AL A A P Mg & & . K]
SIS, BHAIELLHE LI, a(A)AHF ) Mg
B M 7.60% R B 12.42%, B AL S H S
Mg &M 20.51% 325 333.36%. 25 R Ui, KA
PAZD & AZ31 & A 4 B S A 2 64 B B2 44 3%
JEM A 7 2, REEE I N a(ADAEH I Mg B &
fEE Mg 7E A1 (1 317

B 9 Fif 7 A 3% 22 T b N 1:5 I T 43 RE Y
SEM £ Al EDS {36 45 R . & 9(a) BT 7~ N iR A 11
SEM 1%, KA S EDS 45 R U 9(b)im. 4 /4
AR AL S IEF) 90.36%, Mg &8N 9.30%, HE
TLER T REAE A, LA 4 238 N a(ADAH .
MEI9@)F AT, a(ADH 2K ESFHR . B 9(c) AT
NN B F A EDS 453, Hod Al & &N 68.93%,
Mg & &3 N2 30.66%, FIWT B ri kb RH pAH. M
Bl 9(a) R ] AT, BAH 2 BT R I B T AN BORLIR



BREH4H

PRT, S WSS SRS Al-Mg R 5 1kRE

957

45
1 «(Al) phase
40 - [ 1 4-AlMg, phase/eutectic structure
35k [ Nominal Mg content
. B B =
< 30¢
E 25+
g 20t ]
on
S 15F
10 |
5 _ ’/ ’7
0
1:10 1:6 1:5 1:4 1:3

Vaz31/VERs3se
8 Mg % A AR HI P it a( ADHRI B-AL Mg, A/
HRALR Mg & &
Fig. 8 Nominal Mg content and Mg content in a(Al)

phase and S-Al;Mg, phase/eutectic structure in components

Od) iz C R gs 3, b ALE 2R 78.40%,
Mg &8N 11.72%, MnflCrIicE & &5 i,
739079 5.07% A1 1.94%, 45E XRD {46 45 R 7] 5,
C A8 MR A (Cr,Mn)AL, 4. M SEM & 7] I,

(Cr,Mn)AL, #H 252 75 R o A 18 pAH AT o

B 10 i ik 2238 o 123 16, TR 1)
SEM 1 1 EDS i 5 45 2 . &1 10(a) A F£ 1) SEM
1%, E10(b)NE 10(a)H 4 55 EDS 45 . 4 5545
REIR, ALFI Mg & &4 7 8 87.12% H1 12.42%,
HARTGRME =B, TN aA)H. WE 10
(@ AT LA, A BRI a( AL S AH B 2 25 A
KECARIES, AT AL 2 e 3L & a(ADAE. SE3tifa
(AD)AH &R P 1] B A A7 72 AS B HOIR 20 23 (L B #50)
FNHAZURE LN C 1), B B 353 il i 10
()FI(d) 7~ B 10(c)T Al FI Mg ) & 23418 o
(ADAIZKT: B 10(d)F Al & 5N 65.38%, Mg &
N33.36%, 5AAHMIT. BT s B CAIIH L5y
AR AE S fh o AD)FE AR 2 8] HLAR BT, i BAIX
P AL I A i 18] i AT 8 8 5 AL i (atB). FESE 3R a
(ADAER Z B L N R A SE R O, SE e 2 )
S a5 Je st dh a(ADAAETE], 2K F T3k S A
A, S B HE ) g i R 1 AL . BR IR
HLLhh, 15 10() I8 H BRI D 55),

Al (b)
Element x/%
Al 90.36
Mg 9.30
M Si 0.18
Mn 0.16
Fe
Mn
Zn|
Cu
Ti fi Mn Cu
e Ti CT FeFe _7nZy )
0 5 10 15 20
Energy/keV
Al Al
© Element x/% @ Element x/%
M Al 68.93 Al 78.40
Mg  30.66 Mg 11.72
/n 0.22 . Mn 5.07
. Mn  0.10 \ Cr 1.9
° Fe  0.09 - Ti 098
z Mn Fe 081
¢ Cu Si 0.80
. Cr Zn __ 0.28
Cr|lSi Mn Fe . 7n
i Z ISt Mn
b Ti_‘Cr FeFe Cu nZn . 1 L IC&FEe Cu an .
0 35 10 15 20 0 5 10 15 20
Energy/keV Energy/keV

9 IERLLEPZLE Y 1:5 NG R SEM AR AT EDS 45 2R

Fig. 9 SEM image and EDS results of manufacturing specimen with wire feed speed of 1:5: (a) SEM image; (b) a(Al) phase

(point A); (c) f phase (point B); (d) (Cr,Mn)Al,, phase (point C)
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Fig. 10 SEM image and EDS results of specimen with feed wire speed ratio of 1:3: (a) SEM image; (b) Proeutectic a(Al)
phase (point 4); (c) Eutectic a phase (point B); (d) Eutectic £ phase (point C); () Al,(Mn, Fe) (point D)
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Microstructure and mechanical properties of
high Mg content Al-Mg alloys by double wires gas tungsten arc
additive manufacturing process

LUO Xiao-yu, FENG Yue-hai, E Xuan-yu, HAN Hao

(School of Material Science and Engineering, Nanjing University of Science & Technology,
Nanjing 210094, China)

Abstract: As the properties of the high strength Al-Mg alloy component is difficult to be improved, a new gas
tungsten arc additive manufacturing process was proposed to increase the Mg content in Al-Mg alloy component.
Two heterogeneous wires were synchronously fed into the same molten pool, using ER5356 as the main melting
wire, and a small amount of AZ31 as the auxiliary melting wire. Five groups of thin wall components with high
Mg content were deposited by adjusting the ratio of the feed speed of the two wires. The microstructural
characteristics, evolution and mechanical properties of the components were investigated. The results show that
with the wire feed speed ratio between AZ31 and ER5356 increasing from 1:10 to 1:3, the a(Al) phase transforms
from equiaxed grains to dendrites, and the f-Al,Mg, phase transforms into divorced eutectics. The average grain
size increases from 17.26 um to 21.35 pm and then decreases to 14.69 um, meanwhile, the content of the § phase
and the eutectic structure increases. Compared with the Al-Mg alloy component deposited by traditional single
wire feed gas tungsten arc additive manufacturing process, the micro Vickers hardness of the high Mg content
components reaches 114.93 HV on an average, increased by 64.2% and the ultimate tensile strength reaches 342
MPa, increased by 24.8%.

Key words: double wires additive manufacturing; high strength Al-Mg alloy; microstructure; mechanical

properties
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