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Abstract: The analytical model for springback in arc bending of sheet metal can serve as an excellent design support. The amount of 
springback is considerably influenced by the geometrical and the material parameters associated with the sheet metal. In addition, the 
applied load during the bending also has a significant influence. Although a number of numerical techniques have been used for this 
purpose, only few analytical models that can provide insight into the phenomenon are available. A phenomenological model for 
predicting the springback in arc bending was proposed based on strain as well as deformation energy based approaches. The results 
of the analytical model were compared with the published experimental as well as FE results of the authors, and the agreement was 
found to be satisfactory. 
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1 Introduction 
 

Sheet metal bending process plays a major role in 
automobile and aerospace industries to manufacture 
curved parts, in the construction of large spherical and 
cylindrical pressure vessels, etc. One of the major design 
problems in any sheet metal forming process is 
associated with springback. Springback in sheet metal 
parts after forming causes deviation of the final product 
from the targeted dimensions due to elastic recovery 
leading to difficulties in the fabrication of structures. 

The elastic recovery is influenced by a combination 
of various process parameters such as tool shape and 
dimension, material properties, thickness of the sheet, 
type of the process. Accurate prediction of the 
springback after a forming operation is of vital 
importance in the design of tools. Presently, the 
prediction of springback is largely based on numerical 
FE simulation [1−13]. FEM is a time-consuming, 
expensive method and also very sensitive to numerical 
parameters [14−15], such as element type and size, 
algorithms, contact definition and convergence criteria 
for solution. Above all, FEM does not provide insight 
similar to that of analytical expressions. Therefore, it was 
desired to develop a simple analytical model, so as    
to facilitate better understanding of the springback 

prediction. 
The prediction of springback in bending operation 

has been carried out by many investigators in the past. 
For instance, XUE et al [14] presented an energy based 
theoretical approach which employed the membrane 
theory of shells and was mainly focused on the 
deformation and springback of circular and square plates 
subjected to hemispherical stamping. ZHANG et al [15] 
presented an analytical model to predict the springback 
in ‘V’ bending considering combined hardening 
coefficient, blank holder force, sheet thickness etc. 
PERDUIJN and HOOGENBOOM [16] derived an 
explicit relation for the bending couple curvature for 
elastic-elasto plastic, elastic-rigid plastic and rigid plastic 
model. MORESTIN et al [17] developed a mechanical 
theory and implemented in a code to predict the final 
shape of a product in deep drawing process. WEI and 
WAGONER [18] presented a method for the design of 
sheet metal forming dies taking into account the 
springback. The method was an iterative technique based 
on comparing the shape of a target part with the formed 
as well as the unloaded parts. TEKINER [19] carried out 
an experimental study on the determination of 
springback on bent products. The amount of springback 
of several sheet metals with different bending angles was 
obtained on ‘V’ bending dies. ZHANG and LIN [20] 
developed an analytical model to study the springback in 
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sheet metal stamps with a rigid punch and an elastic die. 
They discussed the dependence of springback on the 
main stamping parameters in detail. ASNAFI [21] 
developed an analytical model for ‘V’-die air bending to 
predict the springback and fracture in thick stainless steel 
sheets. CHAKRABARTY et al [22] developed a 
relationship between the bending couple and the 
curvature of the bent sheet and studied the influence of 
anisotropy and strain hardening on the bending 
characteristic of the sheet metal. TAN et al [23] 
developed a model for sheet bending and studied the 
effect of anisotropy and Bauschinger effect on the 
thinning in the sheet. DADRAS [24] analyzed an 
elastic-plastic plane strain pure bending using linear 
hardening material. ZHANG [25] et al developed an 
analytical model for the prediction of springback in plane 
strain U-bending based on Hill 48 yield criterion with 
different hardening rule, i.e. kinematic, isotropic and 
combined hardening. YI et al [26] developed analytical 
models based on residual differential strain and bending 
moment to calculate springback in sheet metal bending. 
GAU and KINZEL [27] proposed an incremental method 
and hardening model based on the isotropic hardening, 
kinematic hardening, Morz multiple surface model, and 
considered Bauschinger effect to predict the springback 
in plane strain bending. GAU and KINZEL [28] 
developed a model based on isotropic and kinematic 
models, Morz multiple surface model for springback 
prediction of aluminum sheet forming. POURBOGHRAT 
and CHU [29] described a method to predict springback 
in two-dimensional draw bending operation using 
moment curvature relationships and incorporate 
kinematic hardening in unbending. POURBOGHRAT et 
al [30] developed the hybrid membrane/shell method to 
predict springback of anisotropic sheet metals 
undergoing axisymmetric loading. ANOKYE-SIRIBOR 
and SINGH [31] used parabolic straight theory to 
develop analytical model for the air bending process. 
EL-DOMIATY and ELSHARKAWY [32] introduced a 
model for stretch bending in U-section beam which is 
capable of determining the effect of beam cross section 
and material property, forming load and final shape. 
ZHAO and LEE [33] simulated springback using a 
combined kinmatic/isotropic hardening model in draw 
bend. KIM et al [34] considered the material properties 
and realistic non-linear curvature of the bent sheet to 
develop the analytical model for springback prediction in 
air bending. POURBOGHRAT et al [35] developed a 
hybrid membrane/shell method using Hill’s 1948 yield 
criterion along with normal anisotropy along with 
kinematic and isotropic hardening laws during reverse 
loading. 

Analytical solutions have been presented by many 
investigators in the past for U- as well as V-bending, 

automotive sheet etc [12−16, 36−37]. However, less 
attention has been paid to regarding the design of 
components used in the fabrication of large cylindrical 
and spherical structures for thick sheets considering the 
effect of forming load on springback. In this 
investigation, an analytical model is proposed to predict 
the springback in arc bending. The model is developed 
considering the average strain throughout the thickness 
of the sheet and taking into account the effect of load on 
plane stress and plane strain. The analytical model is 
based on two different approaches: one based on strain 
and the other on deformation energy. This model is 
applied to the arc bending problem and the predicted 
results are compared with the results of FE simulation as 
well as the published experimental ones [38]. The elasto- 
plastic FE analysis of sheet metal bending process is 
carried out using inhouse developed software 
(RRL-FEM). RRL-FEM is based on a large deformation 
algorithm. The constitutive relation used in the code is 
based on a total-elastic- incremental-plastic (TEIP) strain 
[39]. The validity of the code as well as the constitutive 
framework has been described elsewhere [39]. The TEIP 
algorithm is specially capable of handling the elastic 
unloading accurately. 
 
2 Analytical modeling of arc bending 
 
2.1 Assumptions 

The following assumptions are made in the 
modeling: 

1) Material is isotropic and homogeneous. 
2) There is no residual stress in the sheet prior to, or 

after the bending. 
3) Bending conforms to cylindrical surface. 
4) Neutral axis remains at the mid section of the 

sheet during bending and is tensile strain free. 
 
2.2 Tangential and radial strain 

The radii of the bent sheet at the neutral layer, the 
inner surface and the outer surface are r, rI and rO 
respectively, as shown in Fig. 1. The arc lengths are 

θrl = , θII rl = and θoo rl = , respectively, where θ is 
the angle subtended at the center of the circle. The 
neutral layer is assumed to be free from the tangential 
strain. The tangential strain (εO) at the outer surface 
(convex) of the bent sheet can be written as ε  O=  

θ
θθ

r
rr −o . Since 

2o
trr += , where t is the thickness of 

the sheet. 
 

r
t

2o =ε                                     (1) 
 

Similarly, the compressive strain (εI) at the inner surface 
(concave) of the bent sheet can be written as: 
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Fig. 1 Geometry used for analytical modeling 
 

r
t

2I −=ε                                    (2) 
 
An FE simulation was performed to verify Eqs. (1) 

and (2) and the details are presented in section 4. The 
magnitude of the average strain across the tensile region 
from the neutral layer to the outer surface of the bent 
sheet can be shown to be αO=t/4r and the compression 
region to be αI=−t/4r. The radial strain in the compressed 
sheet due to the platen depression is given by β=−d/t, 
where d is the compression depth, i.e., the reduction in 
the thickness of the sheet due to the platen depression. 

 
2.3 Plane stress condition 
2.3.1 Effective strain 

The following strains are experienced at the outer 
tensile region of the bent sheet. 
 

The tangential strain, 
 

νβαε −= Ot                                 (3) 
 
The radial strain, 
 

βναε +−= Or                          (4 ) 
 
And the strain in z (width) direction, 
 

νβναε −−= Oz                               (5) 
 
The effective strain ε  is given in Refs. [39−40]: 
 

( )
( ) ( ) ( )[ ]2

t
2

r
2

rt2
2

12
1 εεεεεε
ν

ε −+−+−
+

= zz      (6) 

 
Substituting Eqs. (3), (4) and (5) in Eq. (6) get the 

effective strain at the outer tensile region of the bent 
sheet to be 

 
⎣ ⎦βαβαε O

22
O

2
O −+=                          (7) 

 
Similarly, the effective strain at the inner 

compressive region of the bent sheet can be shown to be 
 
⎣ ⎦βαβαε I

22
I

2
I −+=                          (8) 

Taking α= αO=−αI=t/4r, averaging the effective 
strain across the entire cross section (Eqs. (7) and (8)), 
we get 

 
222 βαε +=                                 (9) 

 
2.3.2 Springback 

In this case, the sheet bent to the desired radius with 
the platen induced compression is considered. Let us use 
subscript ‘i’ to denote the initial condition. 

Considering αi=t/4ri and βi=−d/t, it can be shown 
using Eq. (9) that 

 
22

i

2
i 4

⎟
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d
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t

ε                           (10) 

 
Let us use subscript ‘f’ to denote the final condition, 

where the sheet is free from any load. Considering 
αf=t/4rf and βf=(d/t)p1, where rf is the radius of the bent 
sheet after the springback and βf is the irrecoverable 
compressive plastic strain, we have 
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2.3.3 Strain based approach 

Equating the difference between the initial and the 
final effective strains to the deformation induced elastic 
strain (e), we get 

 
e=− fi εε                                  (12) 

 
Here 

E
Ae

n
iε=                               (13) 

 
where nA iεσ =  represents the flow curve of the 
material. Here, E is the elastic modulus, A is a material 
constant and n is the strain-hardening exponent. 
Substituting iε and fε  from Eqs. (10) and (11) in Eq. 
(12), and simplifying and rearranging, we get 
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here ( )2el/ td  corresponds to the elastic component of 
the compressive strain, a term that gets limited by the 
expression’s domain of applicability as given below: 
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The choice of φ depends on the energy 
consideration and is explained in the following section. 
2.3.4 Energy based approach 

Equating the difference between the initial and the 
final deformation energies to the elastic strain energy 
input during the bending, 

 
22

f
2
i e=−εε                                (15) 

 
We can show in the previous section, 
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As we can see from Eq. (16), a negative value of φ 

is not energetically permissible and takes a value as 
given in Eq. (14). 
 
2.4 Plane strain condition 

The derivation is similar to the one given in section 
2.3 and the details are presented in the appendix. For 
strain based approach, the springback value turns out to 
be 
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where 21 ννψ +−= . 

 
For energy based approach, 
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3 Numerical modeling 
 
3.1 Modeling of die 

In this study, the FE simulation of bending, 
involving both the die and the punch, was modeled as an 
arc of a simple circular curve of a specified sector angle, 
as shown in Fig. 2. The numerical difficulties were 
experienced due to the presence of sharp corner at the 
end of the die during the simulation. Numerically, it was 
difficult to slide the nodes of the deforming body (sheet) 
at the sharp corners of the rigid die. To overcome this 

shortcoming, the die was modeled as combination of two 
reverse circular curve joints at a common tangent point, 
as shown in Fig. 2 (at point marked as A). 
 

 
Fig. 2 Bending process showing initial, loaded and unloaded 
sheet 
 
3.2 Material modeling 

The following power law equation is used to 
represent the flow of the material during the process. 

 
n

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

yy ε
ε

σ
σ                                (19) 

 
where n is the strain-hardening exponent, yσ  and yε  
are respectively the stress and the strain corresponding to 
yield condition. The mechanical properties used in the 
study are presented in Table 1 [41−43]. 
 
Table 1 Mechanical properties of materials 

Material
Elastic 

modulus/ 
GPa 

Yield stress/ 
MPa 

Strain 
hardening 
exponent

Poisson 
ratio

Aluminum 72 55 0.26 0.33 

Copper 117 190 0.10 0.36 

Steel 200 295 0.17 0.3 

 
3.3 Constitutive relation used in finite element 

software (RRL-FEM) 
The constitutive relation for large deformation [39], 

based on additive decomposition of velocity strains into 
elastic and plastic components that relates Cauchy stress 
to the total-elastic-incremental-plastic (TEIP) strain 
assuming J2 plasticity, is used. TEIP algorithm directly 
incorporates the material rotation in the constitutive 
equation without any trigonometric approximations, as 
done in Jaumann rate etc [40]. This allows large rotation 
to be simulated with a reasonable accuracy. In addition, 
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the total elastic strain that always appears in the main 
constitutive equation makes the unloading calculation 
reliable and more accurate. 
 
3.4 Mesh geometry and boundary condition 

The initial geometry used for the simulation, with 
an FE mesh, is shown in Fig. 2. A software, coded in 
FORTRAN, is developed to generate the FE mesh. The 
thickness of the sheet, the radius of the die, the number 
of elements in the sheet in x- and y-direction, the number 
of elements in the die and the punch, and the sector angle 
are used as input to generate the mesh. The initial mesh 
configuration consists of bilinear quadrilateral elements, 
as shown in Fig. 2. The details can be found in Ref. [13]. 
 
3.5 Numerical simulation 

In the simulation, the sheet is placed on the bottom 
die and the punch is moved downward gradually. Once 
the punch senses the contact, the deformation is induced 
in the sheet and the sheet metal bends gradually. This is 
numerically simulated by assigning the necessary total 
punch displacement but is carried out in about thousand 
increments. Figure 2 shows the deformation of sheet at 
various stages of the process. The springback is predicted 
in terms of the springback ratio from minimal load 
condition to different extent of compression. It can also 
be taken as different levels of permanent plastic strain 
induced in the sheet. In this study, the ‘minimal load 
condition’ refers to the depression of the punch at which 
the sheet metal just takes the shape of the die. Any 
subsequent displacement of the punch from the minimal 
load condition increases the load, which will finally 
saturates the springback [13] at some point. After the 
complete depression, the punch is gradually elevated to 
free the plate and plate is allowed to elastically relax 
itself incrementally and iteratively. The final shape of the 
bent sheet after releasing the load of forming is shown in 
Fig. 2 by FEA. The springback is calculated in terms of 
the change in radius, i.e., the difference between the 
initial and the final radii. 
 
4 Results and discussion 
 

This discussion essentially pertains to the analytical 
modeling but the validation of the FE simulation is 
presented elsewhere [13]. The analytical model basically 
rests with the assumption that there is no significant net 
residual stress in the sheet. This is possible only when 
the compressive strain in the inner concave region is 
compensated by the tensile strain in the outer convex 
region where the neutral radius is assumed to be 
tangential strain free. In the model, this assumption leads 
to strain varying linearly from −t/2r to t/2r  (Eqs. (1) 
and (2)) from the concave (inner) to the convex (outer) 

surface of the bent sheet. The neutral layer remains at the 
mid section of the sheet. The bent sheet (before loading) 
and the final component (after unloading) are assumed to 
conform to a sector of a circle, as shown in Fig. 1. This 
aspect of circularity and the strain variation from −t/2r to 
t/2r have been specially verified using the FE simulation 
in this investigation. 

The expressions for calculating the springback ratio 
based on the strain based approach and the energy based 
approach are presented by Eqs. (14) and (16) for plane 
stress condition, and Eqs. (17) and (18) for plane strain 
condition, respectively. The springback ratio essentially 
depends on the elastic strain e, normalized design radius 
rf/t and the extent of loading corresponding to d/t. The 
springback expectedly increases with increase in the 
deformation induced elastic strain and it decreases with 
the compression load. The ratio rf/t has a greater 
influence at lower forming loads, but this effect gets 
almost nullified with increase in load. 

A comparison is made between the analytical model 
and a few published experimental data for copper along 
with the results of the FE simulation in Fig. 3. FE based 
plane stress results match well with the published 
experimental ones. The abscissa is taken as rf/t for design 
convenience since the input to the designer is given in 
terms of final radius of the bent sheet. In Fig. 3, the 
results are plotted for the minimal load condition. Figure 
4 shows the comparison of analytical results (plane  
stress) based on the strain as well as the energy based 
approaches with FE simulation and published 
experimental data [38] for copper, aluminum and steel, 
respectively. It emerges from these plots that the results 
of the strain based approach are in better agreement with 
the FE simulation and the experimental results compared 
to the results of the energy based approach. The strain 
based approach heuristically corresponds to force  
 

 
 
Fig. 3 Comparison of analytical model as well as FE simulation 
under plane strain (PN) and plane stress (PS) conditions by 
strain based approach (Eqs. (14) and (16)) with published 
experimental results for copper [38] 
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Fig. 4 Comparison of analytical model as well as FE simulation 

with published experimental results [38] for copper (a), 

aluminum (b) and steel (c) 
 

equilibrium and naturally provides upper bound solution, 
while the energy based approach corresponds to energy 
conservation and leads to the lower bound solution. 

Based on the above conclusion, the effect of load is 
carried out for the strain based approach. Graphs are 
plotted between the springback ratio rf/ri  and the design 
ratio rf/t  for different d/t values for copper, aluminum 
and steel sheet material, as shown in Fig. 5. The results 
of the present analytical model are in reasonable 
agreement with the results of the FE simulation for all 

the three materials in the range of 0<rf/t<250. The 
springback ratio increases with increase in the ratio of rf/t 
for the minimal load conditions but saturates to a thin 
band for higher loads. Springback ratio is observed to be 
higher by the analytical models as compared with FE 
results which may be due to the assumption of zero 
residual stress. A plot between the springback ratio and 
d/t for different rf/t  values is shown in Fig. 6 for copper, 
aluminum and steel sheet respectively to clearly bring 
out the effect of load. 
 

 
 
Fig. 5 Comparison of effects of load on springback by 
analytical model and FE simulation for different ratio values of 
compression depth (d) to thickness (t) for copper (a), aluminum 
(b) and steel (c) 
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Fig. 6 Effect of load on springback by analytical model for 
different radii of die for copper (a), aluminum (b) and steel (c) 
 
5 Conclusions 
 

1) Analytical models were developed to predict the 
springback in arc bending, specially taking into account 
the effect of load under plane stress (PS) and plane strain 
(PN) conditions. These equations provide insight into the 
dependence of springback ratio on the deformation 
induced elastic strain, the design ratio rf/t  (ratio of final 
radius of the bent sheet after springback to thickness of 

the sheet) and the extent of loading dictated by d/t (ratio 
of the compression depth to the thickness of the sheet). 

2) There is virtually no effect of rf/t at the higher 
loads but it has a significant effect at the lower loads of 
forming. At higher loads, the springback ratio saturates 
to a near constant value for the entire range of rf/t. 

3) Strain as well as energy based approaches were 
used in the modeling indirectly corresponding to the 
force equilibrium (upper bound) and energy conservation 
(lower bound) respectively. Strain based approach is 
found to be in better agreement with the published 
experimental results and FE simulation. 

4) The results of the plane stress and the plane strain 
conditions are affected only by a small factor 

2/12 )1( ννψ +−=  for a wide range of the Poisson’s 
ratio and the springback ratio is affected only to an 
extent of about 5%. 
 
Appendix 
 
Al effective strain on surface 

The following strains are experienced at the outer 
tensile region of the bent sheet. 
 

The tangential strain: 
( )νβναννβαε +−−= OOt                     (a1) 

 
The radial strain: 

( )νβνανβναε +−+−= OOr                   (a2) 
 

And the strain in z (width) direction: 
0=zε                                      (a3) 

 
Substituting Eqs. (a1), (a2) and (a3) in Eq. (6), we 

get the effective strain at the outer tensile region of the 
bent sheet to be  

)221(2))(1( 2
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Similarly, the effective strain at the inner 

compressive side of the bent sheet can be derived as: 
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Taking ,4/IO rt=−== ααα  and averaging the 

effective strain across the entire cross section, we get 
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For strain based approach,  
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where 21 ννψ +−= . 
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For energy based approach, 
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where ω has the meaning as given in Eq. (a7). 
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弯曲回弹的半解析建模及弯曲载荷的影响 
 

S. K. PANTHI, N. RAMAKRISHNAN 
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摘 要：对金属板材弧形弯曲的回弹建立解析模型可以为设计提供很好的支持。金属板材的几何形状和材料参数

对回弹量的影响大；另外，弯曲载荷的影响也较大。许多数值模拟技术已经被用来预测回弹量，但只有少数的

解析模型可以用来进行深入研究。为了预测弧形弯曲的回弹，基于应变以及变形能为基础的方法，提出了一个

唯象模型；并对该解析模型的预测结果与已发表的实验结果以及采用有限元分析的结果进行比较。结果表明，

他们的一致性很好，是令人满意的。 

关键词：回弹；板料弯曲；有限元仿真；解析建模 
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