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Fig. 2 Loading graph of conical pick for rock breakage: (a) Loading form; (b) Loading curve
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Table 1 Rock breakage experiments results of conical pick under uniaxial confining stress

Uniaxial compressive  Tensile strength, Brittleness Unixial confining Peak pick  Specific energy, £/

Lithology ] , 3
strength, o /MPa o/MPa index, o /o,  stress, o,/MPa force, F/kN (107 J-cm™)
120 114.27 213.68
100 140.14 377.68
80 148.95 5421.76
60 162.33 7915.20
Granite 126.24 7.56 16.698 40 206.28 5062.12
20 203.44 3433.08
10 76.45 510.30
5 63.77 240.61
0 50.03 134.58
120 100.07 258.68
100 138.34 556.13
80 160.83 7771.28
60 188.90 9694.32
Marble 129.22 6.18 20.909 40 217.90 4972.56
20 183.26 3317.94
10 62.89 474.03
5 43.42 267.94
0 34.84 179.42
90 25.13 40.71
80 58.71 188.17
60 78.93 2311.04
Red 40 112.15 2649.55
sandstone 7.7 531 18.416 20 103.62 1342.93
10 42.33 273.55
5 31.55 143.33
0 16.24 49.36
100 23.15 41.79
90 45.21 95.17
80 68.74 1800.96
Phosphate 60 100.92 3487.76
106.21 5.24 20.269 40 142.17 2794.02
rock 20 113.62 1586.72
10 32.33 166.50
5 16.51 58.65

0 5.26 15.84
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Fig. 4 Regressed surface of rock breakage peak force
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Fig. 5 Regressed surface of specific energy
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Table 2 Experimental results of breakage using conical pick on the defective rocks

Confining . Specific
. Peak pick .
Specimen stress, o/ energy, £/ Failure mode
force, F/kN _3 2
MPa (107 J-cm™)
Intact specimen . .
. 50 173.15 3327.94 Partial splitting
(P-wave velocity 5351 m/s)
Intact specimen 0 102.88 417.8 Complete splitting
Damaged specimen .
. 0 50.98 80.75 Splitting along pre-fracture
(P-wave velocity 2163 m/s)
ds 0 108.53 399.39 Complete splitting cross hole direction
d10 0 100.59 320.88 Complete splitting along hole direction
d20 0 88.72 385.49 Complete splitting along hole direction
Including hole d30 0 63.37 246.95 Complete splitting along hole direction
with different ds0 0 43.05 91.74 Complete splitting along hole direction
diameter/mm d10 50 167.74 2653.23 Partial splitting cross hole direction
d20 50 166.22 2096.45 Partial splitting cross hole direction
d30 50 143.90 2114.97 Partial splitting cross hole direction
ds0 35% 68.02 614.9 Partial splitting cross hole direction
* For specimen with 50 mm-diameter-hole, only 35 MPa confining stress was applied to specimen due to specimen could not with-
stand 50 MPa stress.
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Fig. 6 Change curves of peak force and specific energy of

breakage for intact and fractured rock specimens
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Fig. 9 Coupled static and dynamic breakage of conical pick for rock: (a) Loading form; (b) Loading curve
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Table 3 Experimental results of rock breakage using conical pick under coupled static-dynamic loads

Pick force at rock failure

Confining stress,

Disturbance load (sine wave)

Lithology . .
o,/MPa Pre-static load/kN ) Disturbance
Amplitude/kN Frequency/Hz .
duration/s
100 80 (~57%") 60 5 7.44
60 (~43%) 80 5 20.45
o 30 (~60%) 30 5 2.16
ranite
0 30 (~60%) 20 5 7.39
20 (~40%) 30 5 16.14
10 (~20%) 40 5 51.50
100 80 (~58%) 60 5 5.13
60 (~43%) 80 5 14.70
Marbl 20 (~57%) 20 5 1.02
arble
0 20 (~57%) 15 5 4.57
15 (~43%) 20 5 10.34
10 (~29%) 25 5 37.17

1) Percentage value in parentheses represents ratio of pre-static force during coupled static and dynamic fragmentation to pick peak

force during static fragmentation under same stress condition
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Fig. 10 Change curve of disturbance duration for rock

breakage under coupled static and dynamic loading (/=5 Hz)
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Fig. 11 Non-explosive mechanized mining mode in deep hard ore-rock
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Fig. 12 Mining using roadheader in preparation entryway: (a) Stope layout; (b) Field situation of mining; (c) Cutting

header; (d) Worn-out pick
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Fig. 13 Mining using roadheader in excavation damage zone around pillar: (a) Stope layout; (b) Field situation of mining;

(c) Cutting header; (d) Worn-out pick
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Fig. 14 Mining using high-frequency crushing hammer in unfractured pillar: (a) Stope layout; (b) Field situation of mining;

(c) High-frequency crushing hammer; (d) Impact pick
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Fragmentation characteristics of
deep hard rock and improvement for rock cuttability

WANG Shao-feng', LI Xi-bing', WANG Shan-yong?®, YAO Jin-rui’

(1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
2. School of Civil Engineering, The University of Newcastle, Callaghan NSW 2308, Australia;
3. Guizhou Linhua Group Co., Ltd., Guizhou 550081, China)

Abstract: Cuttability of hard rock is influenced by many factors, such as rock properties, cutting parameters, and
stress conditions. Using TRW =300 true triaxial electro-hydraulic servo system, the influences of confining stress
conditions, loading mode of conical pick and rock properties (brittleness and artificially induced defect) on rock
breakage were investigated. Under uniaxial confining stress condition, the rock cutting difficulty initially increases
and then decreases with increases in uniaxial confining stress, and the high uniaxial confining stress instead
improves the rock cuttability. However, the ultra-high uniaxial confining stress may induce rock burst. The high
preload applied on pick can achieve the high cutability. Rock cuttability presents decrease followed by increase
with increases in rock brittleness. In addition, excavation-induced fractures, pre-slit and pre-borehole in rock mass
can improve hard rock cuttability. Moreover, the improvement measures of rock cuttability were achieved, and the
non-explosive mechanized mining mode in deep hard rock was proposed. The mining tests prove that the
efficiencies of non-explosive mechanized mining improves from 32.6 t /h to 107.7 t/h and 158.2 t/h, respectively,
with cuttability improvement measures of the excavation of induced entryway to pre-fracture orebody cut by
roadheader and the excavation of pre-slit in pillar broken by high-frequency crushing hammer.

Key words: hard rock fragmentation; coupled static and dynamic breakage; artificially induced defect; cuttability

improvement; non-explosive mechanized mining
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