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Fig.1 Schematic illustration of in situ synchrotron XRD experimental set-up
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Fig. 2 Structural analysis of Ti-39Nb alloy before tensile
loading: (a) 1D SXRD spectrum integrated over entire 360°
(Inset shows enlarged view of red boxed area in spectrum);
(b) Bright-field TEM image and corresponding selected
area diffraction pattern; (c) Dark-field TEM image by using
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Fig. 3 Mechanical behavior of Ti-39Nb alloy during
tensile loading: (a) Cyclic stress —strain curves with 0.5%
strain step; (b) Stress—strain curve of single step loading—

unloading at a maximum stress of 250 MPa
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Fig. 4 2D synchrotron diffraction rings of Ti-39Nb alloy under different loading levels: (a) 0 MPa; (b) 250 MPa
(LD—Longitudinal direction; TD—Transverse direction; SD—Specific direction)
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Fig. 5 Microscopic deformation behavior of Ti-39Nb alloy during in situ synchrotron measurements: (a) Unrolled {110}
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Fig. 6

In situ SXRD studies of microstructural characteristics of Ti39Nb alloy (LD, ¢p=80°-100°): (a) 1D SXRD spectrums

upon loading; (b) 1D SXRD spectrums upon unloading; (c) Evolution of lattice strains of (110),, (200), and (211), crystal
planes as functions of tensile stress; (d) Evolution of diffraction peak intensities of (110),, (200), and (211), crystal planes as

functions of tensile stress
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Fig. 7 In situ SXRD study results of microstructural characteristics of Ti39NDb alloy (Special direction, p=53.5°-73.5°): (a)
1D SXRD spectrums upon loading; (b) 1D SXRD spectrums upon unloading; (¢) Evolution of lattice strains of (110),, (200),
and (211), crystal planes as functions of tensile stress; (d) Evolution of diffraction peak intensities of (110),, (200), and (211),

crystal planes as functions of tensile stress
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In situ synchrotron X-ray diffraction study of
deformation behavior of Ti39Nb alloy

MENG Qing-kun"*° MEI Bi-zhou?, ZHANG Pan®, QI Ji-qiu', SUI Yan-wei', GUO Shun*

(1. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China;
2. Zhejiang Yiduan Precision Machinery Co., Ltd., Ningbo 315702, China;
3. Beijing Spacecraft Manufacturing Factory Co., Ltd., Beijing 100094, China;
4. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
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Xuzhou 221116, China)

Abstract: In this paper, the nonlinear elastic deformation behavior of a metastable f-type Ti-39Nb alloy was
studied by in situ synchrotron X-ray diffraction (SXRD) technique. The results indicate that the onset of the
nonlinear elastic deformation appears at an applied stress higher than 60 MPa, and stress-induced martensitic
transformation (SIMT) occurs simultaneously. As a result, the nonlinear elastic deformation behavior of the Ti-
39Nb alloy could be attributed to the SIMT mechanism. Besides, the diffraction peaks of martensite appeared at
specific azimuth angles of the SXRD rings initially, i.e., 26.5° from the loading direction. This is because that
SIMT will firstly occur in the £ grains with < 110 > , parallel to the loading direction and the variants that give the
maximum strain are preferentially formed.
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