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Fig. 1 Schematic diagram of sampling of 2014 aluminum alloy extruded rod (a) and IPF diagrams at different positions:

(b), (d) Center sample; (c), (e) Edge sample (black line in figure indicates misorientation 8=15°)
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Table 1 Chemical composition of experimental materials
(mass fraction, %)
Cu Mg Si Mn Fe
4.04 0.65 0.96 0.63 0.24
Zn Cr Ti Zr Al
0.077 0.022 0.018 <0.01 Bal.
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Fig. 2 True stress—true strain curves under different thermal deformation parameters (C: center sample; E: edge sample):

(@) 15" (b)0.15"(c)0.01s7";(d)0.001s"
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Fig. 12 Distributions of grain boundary misorientations

difference of edge sample before deformation and under
deformation condition of (350 “C, 0.1 s™")
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Fig. 13 Local misorientation diagrams of center samples (C) and edge samples (E) under different deformation conditions
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Fig. 15 Dislocation morphologies of center samples ((a)—(c)) and edge samples ((d) - (f)) under different deformation
conditions: (a), (d) 400 ‘C, 0.01 s7'; (b), (e) 400 ‘C, 0.001 s'; (c), (f) 450 'C, 0.1 57"
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Abstract: The 2014 aluminum alloy large forgings are often forged with large-size extruded bars as blanks. To
clarify the influence of the difference between the center and edge microstructures of the extruded bar on the
deformation behavior and recrystallization microstructure is of great significance for the formulation of forging
process parameters, the precise control of the forging process and the microstructure and properties of the forgings.
In this paper, under the temperatures of 250-450 °C and strain rates of 0.001-1 s, the hot deformation behaviors
of the center and edge samples were studied. The results show that there is no significant difference in the flow
stress of the center and edge samples under different deformation conditions. However, there are obvious
differences in the recrystallization behavior and dislocation evolution of the center and edge samples when they
are deformed. In addition to discontinuous dynamic recrystallization in two samples, the geometric dynamic
recrystallization also exists in the center sample and continuous dynamic recrystallization also exists in the edge
sample. When deformed at 400-450 “C, as the strain rate decreases, the dislocation density of the edge sample
decreases significantly, while the dislocation density of the center sample changes less. Considering the hot

processing map and the homogeneity of microstructure after deformation, it is more appropriate to control the

-1 -1

deformation temperature at 400-450 “C, the center strain rate at 0.01-0.1 s™ and the edge strain rate at 0.1-1 s
during actual forging.
Key words: 2014 aluminum alloy; hot deformation; inhomogeneous microstructure; dynamic recrystallization;

dislocation configuration
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