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Abstract: A new algorithm based on the projection method with the implicit finite difference technique was established to calculate 
the velocity fields and pressure. The calculation region can be divided into different regions according to Reynolds number. In the 
far-wall region, the thermal melt flow was calculated as Newtonian flow. In the near-wall region, the thermal melt flow was 
calculated as non-Newtonian flow. It was proved that the new algorithm based on the projection method with the implicit technique 
was correct through nonparametric statistics method and experiment. The simulation results show that the new algorithm based on 
the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using 
the explicit difference method. 
Key words: implicit finite difference method; 3D incompressible viscous equations; projection method; nonparametric statistics 
                                                                                                             
 
 
1 Introduction 
 

Filling simulation is a very important and helpful 
tool for engineers to design casting process. 
Computational fluid dynamics (CFD) techniques, namely 
marker and cell (MAC) and solution algorithm-volume 
of fluid (SOLA-VOF) are found to be suitable to analyze 
the fluid flow problems. The SOLA-VOF method has 
advantage that the surface tension and wall adhesion can 
be evaluated from the orientation of free surface. 

In the SOLA-VOF method, an explicit difference 
method is often used to calculate the 3D incompressible 
viscous equations in filling simulation. When δx, δy and 
δz are determined, the value of δt is limited by the 
numerical stability condition [1−3] (δx, δy and δz are the 
space steps, and δt is the time step). If the value of δt 
exceeds the stability condition, the mathematical 
operation becomes unstable. In many cases, because the 
time step is limited, the computational efficiency is low. 

In this work, a new algorithm based on the 
projection method with the implicit finite difference 
technique was established to simulate the filling process. 

The calculation region can be divided into different 
regions according to Reynolds number [4]. According to 
different regions, different forms of governing equations 
were used to calculate the velocity fields and the pressure 
for the first time. The simulation results show that this 
new algorithm calculates more quickly than the 
SOLA-VOF method using the explicit difference 
method. 
 
2 Governing equations 
 

The governing equations for 3D incompressible 
viscous flow contain mass conservation equation and 
momentum equations. The three-dimensional Cartesian 
coordinate is used [5−6]. 

The mass conservation equation is expressed as: 
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The momentum equation is expressed as: 
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where t is time; ( ), ,=u u  v  w is the velocity fields; p is 
pressure; S is the non-Newtonian part of the extra stress 
tensor; ( ), ,g x y zg g g= is the gravitational field; 

non-dimensional parameters ( )0 /Re u Lρ μ= and 

( ) ( )0 /Fr u gL=  are the Reynolds and Froude 

numbers; u0 and L denote typical velocity and length;  
ρ is density; μ is dynamic viscosity. In the far-wall region, 
the thermal melt flow has characteristics of Newtonian 
flow, so that the filling process can be calculated as 
Newtonian flow. In the near-wall region, the thermal 
melt flow has characteristics of non-Newtonian flow, so 
that the filling process can be calculated as 
non-Newtonian flow. For Newtonian flow, S=0,     
this can be achieved by setting 1α = and 0β = . For 
non-Newtonian flow, S≠0, this can be achieved by 
setting α=λ2/λ1 and 1β = (λ1 and λ2 are relaxation and 
retardation time constants, respectively). In order to 
solve Eqs. (1) and (2), the staggered mesh is established. 
 
3 Implicit finite difference method for 

thermal melt flow in far-wall region 
 

In the far-wall region, the filling process is 
calculated as Newtonian flow. According to Eqs. (1) and 
(2), the general mathematical equations that 3D model of 
Newtonian incompressible viscous flow can be written as 
( 1α = , 0β = ): 
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0∇⋅ =u                                     (4) 

 
Based on the projection method, the implicit 

technique is used to solve Eqs. (3) and (4). 
Eqs. (3) and (4) can be expressed for time step n+1 

as: 
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1 0n+∇ ⋅ =u                                 (6) 

 
The velocity fields and pressure can be calculated 

by the following steps. 
First, the basic idea behind this approach is to use 

Eq. (5) to solve the intermediate velocity field u. 
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               (7) 
 

The momentum equation Eq. (7) can be 
approximated, the time term and viscous term can be 
gotten from Crank-Nicolson method, the pressure term is 
calculated by using forward differences, and the 
convective terms are calculated by the upwind scheme. 

The momentum equations can be approximated by 
using the following finite difference equation in the X 
direction. 
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( )1
2 UQ UHW D Dα = +  

 
where ( )sgn Uα  equals +1 if 0Uα >  and −1 if 

0Uα < ; 0 1α< < . Other parameters are treated similarly. 
With obvious notation, similar expressions for the 
momentum equations can be readily obtained in Y and Z 
directions. 

Second, this velocity fields are written as the 
following form by using Helmholtz-Hodge theory 
[5−15]: 
 

1 1δn nt ψ+ += − ∇u u%                            (9) 

 
Eq. (9) is written as component form: 
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Third, the pressure is computed. To obtain an 

equation for the pressure, u%  is introduced from Eq. (9) 
into Eq. (7) and then it is subtracted from Eq. (5) to 
obtain 
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where 2 1 (1/ )n tψ δ+∇ = ∇ ⋅u% . When ψ  is calculated for 
each full cell, the pressure is gotten from the following 
finite difference equation: 
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The intermediate velocity fields u%  can be 

calculated from Eq. (7), and the final velocity fields and 
the final pressure can be gotten from Eqs. (10) and (12). 

 
4 Implicit finite difference method for 

thermal melt flow in near-wall region 
 

In the near-wall region, the filling process can be 
calculated as non-Newtonian flow. The general 

mathematical equations can be written as ( 2 1/α λ λ= , 
1β = ) [11−15]: 
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The implicit technique is used to solve Eqs. (13) 

and (14). Eqs. (13) and (14) can be written as 
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The velocity fields and the pressure can be 

calculated by the following sequence of steps. 
First, the basic idea behind this approach is to use 

Eq. (15) to solve the intermediate velocity field u% . 
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Second, Helmholtz-Hodge theory is used, and the 

velocity fields can be written as:  
1 1n ntδ ψ+ += − ∇u u%                           (18) 

 
Third, the pressure is computed as: 
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where 2 1 (1/ δ )n tψ +∇ = ∇ ⋅u% ; the stress tensor S can be 
solved from the Oldroyd-B constitutive equation as: 
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1

u
We

L
λ= is the Weissenberg number. 

 
5 Results and discussion 
 

Gravity casting is adopted and the geometric 
modeling is shown in Fig. 1. The pouring speed is    
0.4 m/s and the pouring temperature is 720 °C. The 
physical parameters of the casting and mold are listed in 
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Table 1. The simulation results of the new algorithm 
based on the projection method with the implicit finite 
difference technique are compared with the simulation 
results of the SOLA-VOF method using the explicit 
difference method. The explicit SOLA-VOF method is 
applied to some commercial simulation software and the 
validity of the explicit SOLA-VOF method is proved. 
Figure 2 illustrates both the experiment results and the 
simulation results of the new algorithm [16−17]. It is 
clear that the simulation results agree very well with the 
experiment results. 
 

 
 
Fig. 1 Schematic dimensions of gravity casting model (Unit: 
mm) 
 

The mesh size is 2.0 mm×2.0 mm×2.0 mm, and the 
total number of meshes is 40671. The process of 
comparison can be described as follows: 

1) The simulation results of the same aluminum 

casting are calculated by the new algorithm and the 
SOLA-VOF method using the explicit difference method 
(identical parameter value). 

The simulation results of the velocity field ( , ,u v w ) 
and the pressure (p) are compared between the new 
algorithm and the SOLA-VOF method using the explicit 
difference method at simulated time of 1.0, 1.5, 2.0, 2.5 
and 3.0 s, respectively. 

2) Take the case of the velocity in X direction (at 
simulated time of 1.0 s). 

The sample size is all the meshes. The method of 
the Wilcoxon signed rank test is used to compare the 
velocity between the new algorithm and the SOLA-VOF 
method using the explicit difference method in X 
direction. 

The calculation results are listed in Table 2, where 
the last two rows are the ranks. The absolute rank row 
has no signs, and the signed rank row gives the ranks 
along with their signs [18]. 

Set the null and alternative hypotheses as: H0 is the 
simulation results are unanimous between the new 
algorithm and the explicit SOLA-VOF method. H1 is the 
simulation results are not unanimous between the new 
algorithm and the explicit SOLA-VOF method. 

The test statistic is given by Refs. [18−22]:  

( )2

1 1
0.713 4 0.1

n n

i i
i i

T R R α
= =

⎛ ⎞⎛ ⎞
⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑    (21) 

 
where 1.6449 1.6449T− < < . 

There is no enough evidence to reject H0. 
The simulation results ( , ,v w p ) are analyzed in the 

same way (at simulated time of 1.0 s). 
Other analyses are similar at simulated time of 1.5, 

2.0, 2.5 and 3.0 s, respectively. 
Analysis shows that the simulation results are 

unanimous between two methods. It is proved that the  
 
Table 1 Physical parameters of casting and mold 

Material 
Latent heat/ 

(kJ·kg−1) 
Density/ 
(kg·m3) 

Specific heat capacity/
(kJ·kg−1·K−1) 

Solidus temperature/ 
°C 

Liquidus temperature/ 
°C 

Aluminum 397.5 2315−2702 0.9−1.09 655 663 

Sand − 2780 0.54−1.00 − − 
 
Table 2 Calculation results of new algorithm and explicit SOLA-VOF method 

Subject X1 X2 X3 X4 … 

Explicit SOLA-VOF method (xi) 0.004 142 −0.003 384 0.009 831 −0.002 354 … 

New algorithm(yi) 0.004 113 −0.003 382 0.009 831 −0.002 365 … 

i i iD x y= −  0.000 029 0.000 002 0 0.000 011  

Absolute rank 1 171.02 12.5  733.01 … 

Signed rank(Ri) 1 171.02 −12.5  733.01 … 
Xi represents the meshes; xi represents the velocity caculated by explicit SOLA-VOF method; yi represents the velocity caculated by new algorithm. 
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Fig. 2 Experiment results and simulation results of new algorithm in benchmark test: (a), (a′) 1.0 s; (b), (b′) 1.5 s; (c), (c′) 2.0 s;   
(d), (d′) 2.5 s; (e), (e′) 3.0 s 
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new algorithm is correct. 

Figure 2 illustrates both the experiment results and 
the simulation results of the new algorithm. It is clear 
that the simulation results agree well with the experiment 
results. 

The new algorithm takes 601 s to complete the 
calculation and the explicit SOLA-VOF method takes 
818 s, the calculating is reduced by 27%. It is true that 
the new algorithm calculates quickly than the 
SOLA-VOF method using the explicit difference 
method. 
 
6 Conclusions 
 

1) The new algorithm based on the projection 
method with the implicit finite difference technique can 
be used for calculating the filling process effectively. 

2) The filling process of the same aluminum casting 
is calculated by the new algorithm based on the 
projection method with the implicit finite difference 
technique and the SOLA-VOF method using the explicit 
difference method. Analysis results show that the 
simulation results are unanimous between the new 
algorithm and the explicit SOLA-VOF method. The 
simulation results of the new algorithm are in good 
agreement with the experiment ones. It is obvious that 
the new algorithm is correct. 

3) The new algorithm calculates more quickly than 
the explicit SOLA-VOF method. In this work, the new 
algorithm reduces calculating time by 27%. 
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基于投影法求解三维不可压缩粘性方程的新算法 
 

牛晓峰 1, 梁 伟 1, 赵宇宏 2, 侯 华 2, 穆彦青 2, 黄志伟 2, 杨伟明 2 
 

1. 太原理工大学 材料科学与工程学院，太原 030024； 

2. 中北大学 材料科学与工程学院，太原 030051 

 

摘  要：提出一种新的基于投影法的隐式有限差分算法，用于计算速度场和压力。这种方法的特点是将计算区域

根据雷诺数分成几个区域；对于远离壁面的区域，热金属流按牛顿流计算；对于贴近壁面的区域，热金属流按非

牛顿流计算。通过非参数统计和实验的方法证明新算法的正确性。数值模拟结果表明，新算法的计算速度要快于

基于 SOLA-VOF 法的显式有限差分方法。 

关键词：隐式有限差分方法；三维不可压缩粘性方程；投影法；非参数统计 
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